SVM を使うと,なにが嬉しいの? 戻る さて,SVM(Support Vector Machine)と言われるものが最近,巷(って言っても,主にパターン認識の分野だけどね)をにぎわしているんだけれど,いったいなにがすごいのだろう? SVMは,パターン識別手法の一つなんだけれども,これまでもパターン識別手法というのはいくつも提唱されている. ニューラルネットワークを使ったパターン識別手法として最も親しみ深いのは,多層パーセプトロンをバックプロパゲーションで学習させる方法だけれど,SVMはバックプロパゲーション学習と比べてどんな「嬉しい」ことがあるんだろうか. ぶっちゃけた話,SVMの最大の特徴は「マージン最大化」にある.じゃあこの「マージン最大化」とは,なんだろう. ここで,「識別線の引き方」というものを考えてみたい. まず,2次元の特徴空間に次のような2つのクラスAと