タグ

データ分析とpandasに関するwerdandiのブックマーク (3)

  • 【初心者向け】Jupyter+Pandas+matplotlibを使ったデータ分析入門 - Gunosyデータ分析ブログ

    こんにちは、データ分析部でバイトをしている子田(id:woody_kawagoe)です。 ニュースパスのログを集計して分析するといった業務を行っています。Gunosyで分析に利用しているツールとしては主にJupyter, Pandas, matplotlibがあります。 この組み合わせは非常に相性が良く、研究でも役立つと思います。 そこで今回のブログではデータ分析に役立つtipsや学んだことをまとめます。 Jupyter Pandas matplotlab データ分析の基的な流れ 参考資料 Jupyter jupyter.org ブラウザ上で利用できる開発環境です。 対話型で、作成したスクリプトと出力結果の対応関係が非常に見やすいです。 スクリプトでprint文をかかなくても最終行に変数おけば表示してくれます。 またgithub上にJupyterで作成できるipynbファイルを置くと他の

    【初心者向け】Jupyter+Pandas+matplotlibを使ったデータ分析入門 - Gunosyデータ分析ブログ
  • Python pandas 欠損値/外れ値/離散化の処理 - StatsFragments

    データの前処理にはいくつかの工程がある。書籍「データ分析プロセス」には 欠損など 前処理に必要なデータ特性の考慮とその対処方法が詳しく記載されている。 が、書籍のサンプルは R なので、Python でどうやればよいかよく分からない。同じことを pandas でやりたい。 データ分析プロセス (シリーズ Useful R 2) 作者: 福島真太朗,金明哲出版社/メーカー: 共立出版発売日: 2015/06/25メディア: 単行この商品を含むブログ (2件) を見る とはいえ、pandas 自身は統計的 / 機械学習的な前処理手法は持っていない。また Python には R と比べると統計的な前処理手法のパッケージは少なく、自分で実装しないと使えない方法も多い。ここではそういった方法は省略し、pandas でできる前処理 / 可視化を中心に書く。 また、方法自体の説明は記載しないので、詳細

    Python pandas 欠損値/外れ値/離散化の処理 - StatsFragments
  • Python pandas 図でみる データ連結 / 結合処理 - StatsFragments

    なんかぼやぼやしているうちにひさびさの pandas エントリになってしまった。基的な使い方については網羅したい気持ちはあるので、、、。 今回は データの連結 / 結合まわり。この部分 公式ドキュメント がちょっとわかりにくいので改訂したいなと思っていて、自分の整理もかねて書きたい。 公式の方はもう少し細かい使い方も載っているのだが、特に重要だろうというところだけをまとめる。 連結 / 結合という用語は以下の意味で使っている。まず憶えておいたほうがよい関数、メソッドは以下の 4 つだけ。 連結: データの中身をある方向にそのままつなげる。pd.concat, DataFrame.append 結合: データの中身を何かのキーの値で紐付けてつなげる。pd.merge, DataFrame.join 連結 (concatenate) 柔軟な連結 pd.concat ふたつの DataFram

    Python pandas 図でみる データ連結 / 結合処理 - StatsFragments
  • 1