現在、Kaggleにてよく使われる手法の一つにGBDT(Gradient Boosting Decision Tree)があります。さらにその種類の1つXGBoostはKagglerによりその効果を検証され非常に人気の高いアルゴリズム・実装です。このブログでは、XGBoostの論文からアルゴリズムを理解するための主要な部分、 TREE BOOSTING IN A NUTSHELL 2.1 Regularized Learning Objective 2.2 Gradient Tree Boosting を丁寧に解説することを目的に書いています。 また、ここで解説した理論、アルゴリズムについてはLightGBMにおいてもほぼ同じと思いますので、合わせて参考になるかと思います。 おことわり しかしながら、最初におことわりをさせていただくのですが、markdownやtexでキレイにまとめる余裕が