タグ

関連タグで絞り込む (2)

タグの絞り込みを解除

ICAとあとで読むに関するwshinyaのブックマーク (1)

  • 主成分分析と独立成分分析とスパースコーディングの比較[python] - 無限の猿

    データを教師なしで変換する行列分解手法、主成分分析(PCA: Principle Component Analysis)、独立成分分析(ICA: Independent Component Analysis)、スパースコーディング(SC: Sparse Coding)の比較。 行列分解手法の明確な定義は知らないが、ここではデータを表すベクトルの集合を横に並べた行列をとして、基底を表す行列と係数のを表す行列の積、 に変換する手法とする。これはすなわち、元のデータをの列にあたる基底の線形和、 で表現することを意味する。はデータの基底で表される空間での表現に相当することになる。 ここでが決まっていれば、を求めるのは線形の逆問題(が正則な正方行列であればその逆行列をにかけてやれば良い)となるが、行列分解問題では双方を同時に求める問題となる。自由度も高くなり、、は一意には決まらない。したがって、、に

  • 1