タグ

algorithmとdeeplearningに関するy-imayaのブックマーク (3)

  • RNNで「てにをは」を校正する - にほんごのれんしゅう

    RNNで「てにをは」を校正する 余談 2017/3/19に、どの深層学習フレームワークがこれから深層学習を始める人におすすめなのかというアンケートをtwitterで取らせていただきました。 五位 Theano(個別カウント) はじめに RNNによる文章校正がリクルートによって提案されて以来、調査タスクとして私のものとに来たりして、「できるんでしょう?」とか軽く言われるけど、実際には簡単にはできません。 RNNによる文章生成ができるから、校正もできるというのが人間の自然な発想なのかもしれませんが、英語と日語の違いに着目した場合、英語がアルファベットのみで構築されるのに比べて日語は、漢字・ひらがな・カタカナと非常に多く、同じように問題を適応すると、すごい高次元の問題を解くこととなり、理想的なパフォーマンスになかなかなりません。 まぁ、あんまり完成してるわけでない技術を完成したようにプレスリ

    RNNで「てにをは」を校正する - にほんごのれんしゅう
  • 初心者がchainerで線画着色してみた。わりとできた。

    デープラーニングはコモディティ化していてハンダ付けの方が付加価値高いといわれるピ-FNで主に工作担当のtai2anです。 NHKで全国放送されたAmazon Picking Challengeでガムテべったべたのハンドやロボコン感満載の滑り台とかを工作してました。 とはいえ、やっぱりちょっとディープラーニングしてみたいので1,2か月前からchainerを勉強し始めました。 せっかくなので線画の着色をしたいなーと思って色々試してみました。 線画の着色は教師あり学習なので線画と着色済みの画像のデータセットが(できれば大量に)必要です。 今回はOpenCVでカラーの画像から線画を適当に抽出しています。 抽出例 → カラーの画像を集めて線画を作ればデータセットの完成です。(今回は60万枚くらい使っています) ネットワークの形ですが、U-netという最初の方でコンボリューションする時の層の出

    初心者がchainerで線画着色してみた。わりとできた。
  • Deep Learning技術の今

    2. ⾃自⼰己紹介 l 得居  誠也  (Seiya  Tokui) 株式会社Preferred  Infrastructure,  Jubatus  Pj.  リサーチャー l 専⾨門は機械学習(修⼠士、現職) l – 系列列ラベリング→ハッシュ・近傍探索索→深層学習 l 今の興味は深層学習、表現学習、分散学習、映像解析 l @beam2d  (Twitter,  Github,  etc.) 2 /  47 3. 2011年年:  ⾳音声認識識における成功 l l 3 /  47 DNN-‐‑‒HMM  を使った⼿手法が、⾳音声認識識の  word  error  rate  で従来 法  (GMM)  より  10%  前後も改善 携帯端末における⾳音声操作に  Deep  Learning  が利利⽤用されるように F. Seide, G. Li and D. Yu.

    Deep Learning技術の今
  • 1