タグ

統計と統計学に関するy_makiのブックマーク (2)

  • Webデータ分析&データサイエンスで役立つ統計学・機械学習系の分析手法10選 - 銀座で働くデータサイエンティストのブログ

    追記 2016年3月に以下の記事によってこの内容はupdateされています。今後はそちらをお読み下さい。 主に自分向けのまとめという意味合いが強いんですが(笑)、僕が実際に2013年6月現在webデータ分析&データサイエンスの実務でツール・ライブラリ・パッケージを利用しているものに限って、統計学・機械学習系の分析手法を10個挙げて紹介してみようと思います。 追記 回帰分析(特に線形重回帰分析) 独立性の検定(カイ二乗検定・フィッシャーの正確確率検定) 主成分分析(PCA) / 因子分析 クラスタリング 決定木 / 回帰木 サポートベクターマシン(SVM) ロジスティック回帰 ランダムフォレスト アソシエーション分析(バスケット分析・相関ルール抽出) 計量時系列分析 おわりに おまけ1:「素性ベクトル+分類ラベル」なるデータ前処理 おまけ2:グラフ理論*10 {igraph}パッケージでグラ

    Webデータ分析&データサイエンスで役立つ統計学・機械学習系の分析手法10選 - 銀座で働くデータサイエンティストのブログ
  • 多変量解析

    データの中には、多くのトレンド(傾向)が必ず隠れています。このトレンドをつかむことができるのならば優位に意思決定を進めることができます。 このページでは、データの中からトレンドを見つける多変量解析の手法を紹介します。 ことわざで「木を見て森を見ず(You can't see the forest wood for the trees. )」といわれるように、データマイニングの分野ではマクロ(巨視的)な視点で全体を捉える能力が求められます。 とはいえ、データの要素数が多くなると全体像を捕らえることが困難になるのです。 コンピュータは局所的な数値の集合として全体を把握していますので、意味ある情報として全体を見ることが不得意です。逆に人間には、もともと空間的に全体像を捉える能力が超越しています。 例をあげて解説します。 左図は写真です。写真も「画素」と呼ばれる一つ一つの情報の集まりで全

  • 1