c = 3 # 状態数 s = [ "w1", "w2", "w3" ] # 状態 m = 2 # 出力数 v = [ "v1", "v2" ] # 出力記号 n = 3 # 観測回数 # それぞれの状態の初期確率 p = [ 1/3, 1/3, 1/3 ] # 状態遷移確率 A = [ [ 0.1, 0.7, 0.2 ], [ 0.2, 0.1, 0.7 ], [ 0.7, 0.2, 0.1 ] ] # 状態毎のでのそれぞれの観測確率 B = [ [ 0.9, 0.1 ], [ 0.6, 0.4 ], [ 0.1, 0.9 ] ] # p1をp[0], p2をp[1], p3をp[2] # v1をv[0], v2をv[1] # x1をx[0], x2をx[1], x3をx[2] # として以下表現する # 観測結果 x = [ 0, 1, 0 ] # v1, v2, v1という結果 cl
![続・わかりやすい パターン認識 教師なし学習入門 [隠れマルコフモデル・ビタービアルゴリズムの実験] - Qiita](https://cdn-ak-scissors.b.st-hatena.com/image/square/d5bb7f9def2a542d275ab703fd6aa16c3f322157/height=288;version=1;width=512/https%3A%2F%2Fqiita-user-contents.imgix.net%2Fhttps%253A%252F%252Fqiita-user-contents.imgix.net%252Fhttps%25253A%25252F%25252Fcdn.qiita.com%25252Fassets%25252Fpublic%25252Farticle-ogp-background-afbab5eb44e0b055cce1258705637a91.png%253Fixlib%253Drb-4.0.0%2526w%253D1200%2526blend64%253DaHR0cHM6Ly9xaWl0YS11c2VyLXByb2ZpbGUtaW1hZ2VzLmltZ2l4Lm5ldC9odHRwcyUzQSUyRiUyRnFpaXRhLWltYWdlLXN0b3JlLnMzLmFtYXpvbmF3cy5jb20lMkYwJTJGNTE4NDklMkZwcm9maWxlLWltYWdlcyUyRjE0NzM2OTI1NjA_aXhsaWI9cmItNC4wLjAmYXI9MSUzQTEmZml0PWNyb3AmbWFzaz1lbGxpcHNlJmZtPXBuZzMyJnM9YTU2MmUyMGQzNzVlYmE5ZDgyMjgyNWM1NDQ1OTdiMzI%2526blend-x%253D120%2526blend-y%253D467%2526blend-w%253D82%2526blend-h%253D82%2526blend-mode%253Dnormal%2526s%253Db3f740a3cbe1fa2a2b409866477b12da%3Fixlib%3Drb-4.0.0%26w%3D1200%26fm%3Djpg%26mark64%3DaHR0cHM6Ly9xaWl0YS11c2VyLWNvbnRlbnRzLmltZ2l4Lm5ldC9-dGV4dD9peGxpYj1yYi00LjAuMCZ3PTk2MCZoPTMyNCZ0eHQ9JUU3JUI2JTlBJUUzJTgzJUJCJUUzJTgyJThGJUUzJTgxJThCJUUzJTgyJThBJUUzJTgyJTg0JUUzJTgxJTk5JUUzJTgxJTg0JTIwJUUzJTgzJTkxJUUzJTgyJUJGJUUzJTgzJUJDJUUzJTgzJUIzJUU4JUFBJThEJUU4JUFEJTk4JTIwJUU2JTk1JTk5JUU1JUI4JUFCJUUzJTgxJUFBJUUzJTgxJTk3JUU1JUFEJUE2JUU3JUJGJTkyJUU1JTg1JUE1JUU5JTk2JTgwJTIwJTVCJUU5JTlBJUEwJUUzJTgyJThDJUUzJTgzJTlFJUUzJTgzJUFCJUUzJTgyJUIzJUUzJTgzJTk1JUUzJTgzJUEyJUUzJTgzJTg3JUUzJTgzJUFCJUUzJTgzJUJCJUUzJTgzJTkzJUUzJTgyJUJGJUUzJTgzJUJDJUUzJTgzJTkzJUUzJTgyJUEyJUUzJTgzJUFCJUUzJTgyJUI0JUUzJTgzJUFBJUUzJTgyJUJBJUUzJTgzJUEwJUUzJTgxJUFFJUU1JUFFJTlGJUU5JUE4JTkzJTVEJnR4dC1hbGlnbj1sZWZ0JTJDdG9wJnR4dC1jb2xvcj0lMjMxRTIxMjEmdHh0LWZvbnQ9SGlyYWdpbm8lMjBTYW5zJTIwVzYmdHh0LXNpemU9NTYmdHh0LXBhZD0wJnM9ZDk5N2NmNjQwODAwM2I0YzQ5ZmM3NzE5YzMzMDAyMTI%26mark-x%3D120%26mark-y%3D112%26blend64%3DaHR0cHM6Ly9xaWl0YS11c2VyLWNvbnRlbnRzLmltZ2l4Lm5ldC9-dGV4dD9peGxpYj1yYi00LjAuMCZ3PTgzOCZoPTU4JnR4dD0lNDBybmV1byZ0eHQtY29sb3I9JTIzMUUyMTIxJnR4dC1mb250PUhpcmFnaW5vJTIwU2FucyUyMFc2JnR4dC1zaXplPTM2JnR4dC1wYWQ9MCZzPTAwY2Y0ODhhNDJlMGU3NThmOTRjOGUzODllYmRkNDI2%26blend-x%3D242%26blend-y%3D480%26blend-w%3D838%26blend-h%3D46%26blend-fit%3Dcrop%26blend-crop%3Dleft%252Cbottom%26blend-mode%3Dnormal%26s%3D515ead6b35c4f2522a64ffb573bc85ca)