タグ

関連タグで絞り込む (0)

  • 関連タグはありません

タグの絞り込みを解除

algorithmとAlgorithmとimagerecognitionに関するyukimori_726のブックマーク (2)

  • Deep Learningの気持ちを理解する - Classification編 - Qiita

    画像分野では今やDeep Learningによる解析が主流となりつつありますが、結果の解釈が難しいのが難点です。医療分野などでは特に、モデルの出力に対する説明力が強く求められるのではないでしょうか。今回は、そういった時に活用できる可視化手法を紹介します。 紹介する手法はOBJECT DETECTORS EMERGE IN DEEP SCENE CNNs, Zhou+, '14で提案されている方法です。 論文中でやっていること classificationモデルの学習(通常の学習) 1と同じ前処理を適用した画像を入力として、1で学習したモデルでclass毎の確率値を計算 2で使用した画像の一部の領域をマスクした画像を入力として、class毎の確率値を計算 3を5000個程度の領域で行い、値を取得 4の個々の出力値と2の出力値の差分をとる 任意の閾値を設定し、5の値が閾値を超えていない領域は0

    Deep Learningの気持ちを理解する - Classification編 - Qiita
  • 第3回 オブジェクト検出してみよう | gihyo.jp

    第1回、第2回と画像認識の基礎とOpenCVについて紹介してきました。第3回目の今回は、いよいよ連載の目玉であるOpenCVを使ったオブジェクト検出に挑戦してみます。 オブジェクト検出の仕組み 基原理のおさらい オブジェクト検出のプログラムを書き始める前に、そもそもどんな仕組みでオブジェクト検出を行っているのかを理解しましょう。 第1回では画像認識の原理として、学習フェーズと認識フェーズがあることを説明しましたが、OpenCVに実装されているオブジェクト検出プログラムもこの流れに従います。つまり、画像から特徴量を抽出し、学習アルゴリズムによってオブジェクトを学習します(詳しくは第1回を参照してください⁠)⁠。 図1 画像認識の流れ OpenCVに実装されているオブジェクト検出プログラムは、Paul Violaらのオブジェクト検出の研究[1]をベースに、Rainer Lienhartらが

    第3回 オブジェクト検出してみよう | gihyo.jp
  • 1