タグ

関連タグで絞り込む (0)

  • 関連タグはありません

タグの絞り込みを解除

algorithmとMachineLearningとresearchに関するyukimori_726のブックマーク (7)

  • 2013年 今最も旬な機械学習の研究者たち9人 - Qiita

    Deleted articles cannot be recovered. Draft of this article would be also deleted. Are you sure you want to delete this article? 今年一年の機械学習を素人的に振り返ってみるとでぃーぷらーにんぐがすごかったなー、みたいなミーハーな感想がまず思い浮かぶわけなんだけども、実際のところ今ホットな研究は何なんだろうということで、泣く子も黙る機械学習の代表的な国際会議、NIPSとICMLの過去3年分の採択論文を著者にフォーカスしてみることにした。 1st authorの重要度をそれ以外の著者よりも重くしてスコアづけした。 (複数人の著者がいる場合は1st authorを0.8として、残りの0.2を他の著者に分配、1人の場合は1とする) 参考: IR研究者をスコアリングしてみた

    2013年 今最も旬な機械学習の研究者たち9人 - Qiita
  • スペクトラルクラスタリングは次元圧縮しながらKmeansする手法 - 武蔵野日記

    機械学習系のエントリを続けて書いてみる。クラスタリングについて知らない人は以下のエントリ読んでもちんぷんかんぷんだと思うので、クラスタリングという概念については知っているものとする。 それで、今日はスペクトラルクラスタリングの話。自然言語処理以外でも利用されているが、これはグラフのスペクトルに基づくクラスタリングの手法で、半教師あり学習への拡張がやりやすいのが利点。なにをするかというとクラスタリングをグラフの分割問題(疎であるエッジをカット)に帰着して解く手法で、どういうふうに分割するかによって Normalized cut (Ncut) とか Min-max cut (Mcut) とかいろいろある。 完全にグラフが分割できる場合はこれでめでたしめでたしなのだが、実世界のグラフはそんな簡単に切れないことが往々にしてある。それで近似してこのグラフ分割問題を解くのだが、Normalized c

    スペクトラルクラスタリングは次元圧縮しながらKmeansする手法 - 武蔵野日記
  • [機械学習] クラスタリングにおけるコサイン類似度に関する性質の証明 - tsubosakaの日記

    bayonやCLUTOが爆速な理由 - download_takeshi’s diaryを読んで、すぐには成り立つかどうか分からなかったので証明してみた。 上の記事で述べられていることはクラスタ中のベクトルとその中心ベクトルのコサイン類似度の和と、クラスタ中のベクトルを全て足したベクトルのノルムが一致するというである。 ただしここでクラスタ中の要素ベクトルはすべて大きさ1の規格化されたベクトルであるとする。 証明 今クラスタ内に含まれるベクトルを とする。 このとき全ベクトルを足しこんだ複合ベクトルを とする。またこのクラスタのセントロイドは となる。このときセントロイドと各ベクトルとのコサイン類似度は [tex: s_i = \frac{}{||C|| ||x_i||} = \frac{}{||{C}||}] となる。ここでと正規化されていることを用いた。この類似度の合計は [tex:

    [機械学習] クラスタリングにおけるコサイン類似度に関する性質の証明 - tsubosakaの日記
  • トーナメントと多値分類 - DO++

    今やってる研究で、トーナメント問題を調べる機会がありました。 トーナメントは私も知らなかったのですが、勝者や順位を決める方式のことを指し、いわゆる二人ずつ戦って生き残っていく方式はノックアウトトーナメントといわれるそうです(wikipedia)。 #10000人戦う時にノックアウトトーナメントでは何回試合が行われるかというのはよくある質問ですね。 で、このトーナメント方式というのは調べてみると非常に様々なものがあります 例えばスイス式トーナメントは、最初はランダムな組み合わせで対戦、次は勝者同士と敗者同士、その次は全勝・1勝1敗・2戦全敗のそれぞれが・・というふうに同じ成績の人同士で戦う方式です。レーティングを計算して、レーティングが近いもの同士を戦わせるような拡張もあります。近いのは将棋でやってるようなものですね。 利点は全ての人が同じ試合数で戦い、また厳密な順位が決めやすいことがありま

    トーナメントと多値分類 - DO++
  • 有限混合分布モデルの学習に関する研究 (Web 版)

    次へ: 序 論 有限混合分布モデルの学習に関する研究 (Web 版) 赤穂 昭太郎 2001 年 3 月 15 日学位授与(博士(工学)) 序 論 研究の背景と位置づけ 論文の構成 有限混合分布とその基的性質 定義 モジュール性 階層ベイズモデルとの関係 パラメトリック性とノンパラメトリック性 RBF ネットワークとの関係 学習における汎化と EM アルゴリズム 最尤推定 汎化と竹内の情報量規準 (TIC) 汎化バイアス 竹内の情報量規準 (TIC) 冗長性と特異性 EM アルゴリズム 一般的な特徴 一般的な定式化 独立なサンプルが与えられた時の混合分布の学習 独立な要素分布の場合 サンプルに重みがある場合 EM アルゴリズムの一般化 EM アルゴリズムの幾何学的解釈 正規混合分布の汎化バイアスの非単調性について はじめに Radial Basis Boltzmann Machine (

  • netflix prize is over, 時間経過による嗜好性の変化 - DO++

    米国のオンラインDVDレンタルサービス「Netflix」が、現在利用しているレコメンデーションシステムの性能をはじめに10%改善したチームに100万ドルの賞金を与えるという触れ込みで始まったnetflix prizeは当初の予想よりも時間がかかったが、つい最近最初からトップを走り続けていたbellkorと、上位陣のコラボレーションのチームが10%の壁を破った(leaderboard)。 彼らの手法は「非常に多くの様々な種類のレコメンデーションシステムの結果を混ぜ合わせる」という愚直だがいかにも精度が出そうだという方法を採用している(、と昨年度の結果からは思われる。近々詳細は出るだろう。) 実際に使ってとどめになったかどうかは分からないが、彼らのチームの主要メンバーがKDDで新しい手法を発表しており、単一の手法による最高精度を達成している。ちなみに今年のKDD(データマイニング系の学会の最高

    netflix prize is over, 時間経過による嗜好性の変化 - DO++
  • オンラインEMアルゴリズム - DO++

    EMアルゴリズム(Expectation Maximizationアルゴリズム、期待値最大化法、以下EMと呼ぶ)は、データに観測できない隠れ変数(潜在変数)がある場合のパラメータ推定を行う時に有用な手法である。 EMは何それという人のために簡単な説明を下の方に書いたので読んでみてください。 EMのきちんとした説明なら持橋さんによる解説「自然言語処理のための変分ベイズ法」や「計算統計 I―確率計算の新しい手法 統計科学のフロンティア 11」が丁寧でわかりやすい。 EMは教師無学習では中心的な手法であり、何か観測できない変数を含めた確率モデルを作ってその確率モデルの尤度を最大化するという枠組みで、観測できなかった変数はなんだったのかを推定する場合に用いられる。 例えば自然言語処理に限っていえば文書や単語クラスタリングから、文法推定、形態素解析、機械翻訳における単語アライメントなどで使われる。

    オンラインEMアルゴリズム - DO++
  • 1