タグ

関連タグで絞り込む (1)

タグの絞り込みを解除

mathとnormに関するyukimori_726のブックマーク (2)

  • L2ノルム,L1ノルム,L0ノルム - 憂鬱な情報系学生

    良く聞くんですが、よく分かっていなかった用語。 原点(あるいは平均などの特定の点)から ある点までの距離を表す”ノルム”。 良く聞くのが”L2ノルム”。 これは、各次元の値を2乗した和。 次が”L1ノルム”。 これは、各次元の値の絶対値の和。 最後に”L0ノルム”。 これは、0でない次元の数に等しい。 なんで”L0ノルム”というか。 実は各次元の値の”0極限”乗の和という意味らしい。 (0以外の)全ての実数の0乗は1なので、0極限乗でも1になる。 また、0は何乗しても0である。 だから、各次元の値が0でない分だけ1が足されて、 結局、0でない次元の数になる ということみたいです。 ちなみに0の0乗は一般には定義されないそうです。 (補足) ベクトル について、各ノルムを数式で表すと以下のようになります。 (L2ノルム) (L1ノルム) (L0ノルム) ただし、 (更に補足) 2点 , 間の

    L2ノルム,L1ノルム,L0ノルム - 憂鬱な情報系学生
  • ノルムの意味とL1,L2,L∞ノルム | 高校数学の美しい物語

    nnn 次元ベクトルは(この記事では)実数を nnn 個並べたものだと考えて下さい。 高校数学で習う2次元ベクトル(平面ベクトル),3次元ベクトル(空間ベクトル)の一般化です。 (実数上のベクトル空間 VVV に対して) 任意の xundefined,yundefined∈V\overrightarrow{x},\overrightarrow{y}\in Vx,y​∈V と任意の実数 aaa に対して以下の3つの性質を満たす関数 ∥∗∥\|*\|∥∗∥ をノルムと呼ぶ: ∥xundefined∥=0  ⟺  xundefined=0undefined\|\overrightarrow{x}\|=0\iff \overrightarrow{x}=\overrightarrow{0}∥x∥=0⟺x=0 ∥axundefined∥=∣a∣∥xundefined∥\|a\overrightarro

    ノルムの意味とL1,L2,L∞ノルム | 高校数学の美しい物語
  • 1