ナイーブベイズの概要 ナイーブベイズ分類器は特徴ベクトル間に条件付き独立性を仮定したベイズ定理に基づく分類器です。現実の問題では特徴を表す素性同士に何らかの相関が見られるケースが多々ありますが、独立性仮定によって計算量を簡素化・削減し、高速でそこそこの精度を誇る分類器を実装することができます。 ベイジアンとヒューリスティクス これらを鑑みるとそもそも元より高精度を期待できる分類器ではないですし、諸々の論文等では比較対象として負けるための分類器とまで言う声も聞かれるほどです。多くは独立性を仮定するべきではない問題に適用しているからで当たり前なのですが、筆者の私見としてはナイーブベイズはヒューリスティックな問題に高い実用性を発揮すると思います。例えばテキストマイニングといった完全性を追い求めるのがなかなか難しい分野において、高速である程度の正解率を叩きだす分類器として実用性能が高いでしょう。