タグ

Haskellと圏論に関するyuroyoroのブックマーク (3)

  • How Haskell is Changing my Brain

    Yoneda Yay! Why Haskell? Haskell syntax looks different. But once you learn basic Haskell syntax, a huge world of implementations opens up to you. Many Haskell library functions exist in other languages too, for example in scalaz. Haskell for Learning We can understand abstractions and concepts (like Yoneda!) through Haskell. We can develop our learning skills themselves through Haskell. Haskell f

  • Haskell/圏論 - Wikibooks

    この項目では Haskell に関連する内容に限って圏論の概観を与えることを試みる。そのために、数学的な定義に併せて Haskell コードも示す。絶対的な厳密さは求めない。そのかわり、圏論の概念とはどんなものか、どのように Haskell に関連するかの直感的な理解を読者に与えることを追求する。 3つの対象A, B, C、3つの恒等射, , と、さらに別の射, からなる単純な圏。3つめの要素(どのように射を合成するかの定義)は示していない。 質的に、圏とは単純な集まりである。これは次の3つの要素からなる。 対象(Object)の集まり。 ふたつの対象(source objectとtarget object)をひとつに結びつける射の集まり。(これらはarrowと呼ばれることもあるが、Haskellではこれは別の意味を持つ用語なので、ここではこの用語を避けることにする。) f がソースオブ

  • モナドのKleisli圏 | tnomuraのブログ

    圏論からHaskellのIOモナドへの最短距離の近道を示してくれる文書を見つけた。 『モナドへの近道・Haskell からの寄道』 中村翔吾著 がそれだ。数学的にきちんと説明してあるので、読んですぐ理解できるようなものではないが、何となくIOモナドの考え方の雰囲気のようなものは伝わった気がする。 大げさな話になるが、この世界は何でできているかというと、いろいろな物とそれらのあいだの関係で成り立っていると言ってもいい。すなわち、世界のモデルの雛形として、集合Xと集合YとX->Yの関数 f(x) の集まりである関数の集合 Hom(X,Y) を考えることができるということだ。 たとえば、集合 X={1, 2} と集合 Y={a, b} からなる世界があり、X->Yの関数を集めた集合、Hom(X,Y) ={f, g} があったとする。すると、X, Y, Hom(X,Y) の三つの組みでこの世界は成

    モナドのKleisli圏 | tnomuraのブログ
  • 1