タグ

ブックマーク / chiral.hatenablog.com (2)

  • 統計的学習理論(1): フィッシャー情報量とクラメールラオ下限と最尤法 - アドファイブ日記(ミラー版)

    勉強したことメモ。数式を使わずに書く。 また、行間をスキップせずに、多少くどいかもしれないくらいにきっちり順を追って説明を書いたので長いけどわかりやすくなっているはず。 第一回はベイズの手前まで、最尤法のあたりまでの話をする。 推定量 データを表す確率変数があってその密度関数は何らかのパラメータであらわされているとする。観測したデータから合理的にパラメータを決定するタスクのことを推定という。 推定を世界で最初にガッチリ研究したのはフィッシャーという人で、彼は推定方法の良しあしを判断する基準として、(A)不偏性、(B)有効性、(C)一致性、(D)漸近正規性、(E)十分性、などを考えた。 データからパラメータを推定する手続きは、データの関数として表せる。そういう関数を推定関数、そうやって計算した値を推定量と呼ぶ。 観測されうるデータは確率変数なので、推定量も確率変数となる。 推定量が確率変数だ

    統計的学習理論(1): フィッシャー情報量とクラメールラオ下限と最尤法 - アドファイブ日記(ミラー版)
  • カルマンフィルタのアドテクへの応用(実践編) - アドファイブ日記(ミラー版)

    前回のつづきです。いくつか理論の補正*1 実験はR言語で行いました。ソース及びデータの一式はChiral's Gistに置いてあります。 具体的な問題設定 ある市場において、商品カテゴリ1,2があり、A社とB社が競合してるとします。A社は1,2両方のカテゴリの商品を扱っているいっぽうで、B社はカテゴリ2の商品のみを扱っています。 ユーザの興味ベクトルは、商品カテゴリ1,2それぞれの選好度、A社とB社それぞれのブランド選好度という4つの要素と、それらの4要素の変化の速度成分を加えて計8次元のベクトルとします。ここでいうユーザは何らかのひとかたまりのオーディエンスという想定です。 そしてA,Bの2社が、ユーザに向けてそれぞれ広告を打ちました。時間の単位は1週間とし、両社の広告の応酬が繰り広げられた3か月(13週)間を分析対象とします。 広告の種類は3種類、すなわち広告1がA社の商品カテゴリ1、

    カルマンフィルタのアドテクへの応用(実践編) - アドファイブ日記(ミラー版)
  • 1