タグ

関連タグで絞り込む (0)

  • 関連タグはありません

タグの絞り込みを解除

algorithmとProgrammingとscalabilityに関するHeavyFeatherのブックマーク (2)

  • ネットワークプログラムのI/O戦略 - sdyuki-devel

    図解求む。 以下「プロトコル処理」と「メッセージ処理」を分けて扱っているが、この差が顕著に出るのは全文検索エンジンや非同期ジョブサーバーなど、小さなメッセージで重い処理をするタイプ。ストリーム指向のプロトコルの場合は「プロトコル処理」を「ストリーム処理」に置き換えるといいかもしれない。 シングルスレッド・イベント駆動 コネクションN:スレッド1。epoll/kqueue/select を1つ使ってイベントループを作る。 マルチコアCPUでスケールしないので、サーバーでは今時このモデルは流行らない。 クライアントで非同期なメッセージングをやりたい場合はこのモデルを使える: サーバーにメッセージを送信 イベントハンドラを登録;このときイベントハンドラのポインタを取っておく イベントハンドラ->フラグ がONになるまでイベントループを回す イベントハンドラ->結果 を返す 1コネクション1スレッ

    ネットワークプログラムのI/O戦略 - sdyuki-devel
  • GoogleのMapReduceアルゴリズムをJavaで理解する

    GoogleMapReduceアルゴリズムをJavaで理解する:いま再注目の分散処理技術(前編)(1/2 ページ) 最近注目を浴びている分散処理技術MapReduce」の利点をサンプルからアルゴリズムレベルで理解し、昔からあるJava関連の分散処理技術を見直す特集企画(編集部) いま注目の大規模分散処理アルゴリズム 最近、大規模分散処理が注目を浴びています。特に、「MapReduce」というアルゴリズムについて目にすることが多くなりました。Googleの膨大なサーバ処理で使われているということで、ここ数年の分散処理技術の中では特に注目を浴びているようです(参考「見えるグーグル、見えないグーグル」)。MapReduceアルゴリズムを使う利点とは、いったい何なのでしょうか。なぜ、いま注目を浴びているのでしょうか。 その詳細は「MapReduce : Simplified Data Proc

    GoogleのMapReduceアルゴリズムをJavaで理解する
  • 1