ブックマーク / risuo.hatenablog.com (1)

  • LDAを利用した、twitter上のユーザ類似度判定システム - risuo's blog

    大学院で自然言語処理の研究をしつつ、ブログタイトルのようなものを趣味的にチマチマと作っていまいた。個人的になかなか面白い解析結果が出たと思ったのでご紹介します。 目標: 1.twitter上で、ある入力ユーザ(自分でなくてもよい)と興味の対象が似ているユーザを発見する 2.興味あるトピックには、どういう単語が含まれているか発見する 手法: 1.1ユーザのツイート全体を1つの文書としてモデリングし、LDAで解析 2.全てのユーザについて、トピック-ユーザの特徴ベクトルの距離を使って類似度を計算 特徴: 1.巷にあるソーシャルネットワーク系の解析でありがちな、ユーザ同士のリンク情報を全く使っていない 2.トピックの次元は語彙の次元と比べてかなり小さい(1/(10^3)くらい)ので、単に単語の頻度を数えるのと比べて柔軟 解析結果ですが、とりあえずpythonの処理系が動作する環境で確認できるよう

    LDAを利用した、twitter上のユーザ類似度判定システム - risuo's blog
    Hmj-kd
    Hmj-kd 2014/06/09
    LDA
  • 1