他にも例として、1932年にユージン・ウィグナーが量子誤り訂正の研究[7]で提案した位相空間上の擬確率分布であるウィグナー関数が挙げられる。1945年バートレットはウィグナー分布が負の値をもつことに数理論理的な矛盾がないことを見出した[8]。ウィグナー関数は量子光学分野でよく利用され、位相空間量子化の基礎となっている。また、量子干渉のある場合に負値となることから、量子干渉があることをわかりやすく示すことができる。ウィグナー関数が負値をとる領域は、量子論の不確定性原理により直接観測することが困難なほど小さいが、可観測量の期待値を求めるときに利用されている。 ファイナンス[編集] 最近になって負の確率は数理ファイナンスに応用されるようになった。計量ファイナンスにおいてはほとんどの確率はリスクニュートラル確率として知られる正の確率や擬確率である。確率論上の一連の仮定の下で、正の確率だけでなく負の