タグ

確率に関するKatagiriSoのブックマーク (3)

  • 負の確率 - Wikipedia

    他にも例として、1932年にユージン・ウィグナーが量子誤り訂正の研究[7]で提案した位相空間上の擬確率分布であるウィグナー関数が挙げられる。1945年バートレットはウィグナー分布が負の値をもつことに数理論理的な矛盾がないことを見出した[8]。ウィグナー関数は量子光学分野でよく利用され、位相空間量子化の基礎となっている。また、量子干渉のある場合に負値となることから、量子干渉があることをわかりやすく示すことができる。ウィグナー関数が負値をとる領域は、量子論の不確定性原理により直接観測することが困難なほど小さいが、可観測量の期待値を求めるときに利用されている。 ファイナンス[編集] 最近になって負の確率は数理ファイナンスに応用されるようになった。計量ファイナンスにおいてはほとんどの確率はリスクニュートラル確率として知られる正の確率や擬確率である。確率論上の一連の仮定の下で、正の確率だけでなく負の

  • 確率概念について説明する(第3-1回):可能な世界の全体を1とする — コルモゴロフによる確率の定理(前編) - Take a Risk:林岳彦の研究メモ

    こんにちは。林岳彦です。先日、小学生の息子とセブンイレブンに行きました。そこでふと、「あの外壁、あれ物のレンガじゃなくてただの印刷だから」と息子に教えたところ、それが彼にとっては思いもよらぬことだったようで、実はすべすべとしている外壁に触っては「すっかり騙されてた!(ガーン)」と衝撃を受けていました。小さな子どもをお持ちのみなさま、この世の隠蔽された真実(=セブンイレブンの外壁は印刷)を彼ら/彼女らに教えてみると面白い反応が期待できるかもですよ! さて。 今回は、前回の記事の続きとして、確率という概念の「規格」について説明していきたいと思います。 (今回はとても長い上に内容がハードかもしれません。いつもながらすみません。。) 前回の軽いまとめ 前回の記事では: 少なくとも、「確率」とは「可能性を数値で表したもの」である というボンヤリとした出発点から: 「可能である」ということは、「この

    確率概念について説明する(第3-1回):可能な世界の全体を1とする — コルモゴロフによる確率の定理(前編) - Take a Risk:林岳彦の研究メモ
  • 5分でわかるベイズ確率

    11. • 問い1 ゆがみの無いコイン → 表裏の出る確率は 1/2 • 問い2 ある商店街 → 場所によって男女比が違う 男女の通る確率は不確定 ベイズ確率

    5分でわかるベイズ確率
  • 1