地元と文化活動の思い出(地元でのライブの思い出) 美術手帖の編集長が帰省中に『巨大なイオンモールだけが煌々と明るい地方都市に帰省すると、美術の「美」の字も見つけられないと』ツイートしたことが炎上していた。 調べるとどうやら編集長は私の地元・伊賀市のすぐ近くの鈴鹿市出身らしい。 鈴鹿の事情はあまり知ら…

http://d.hatena.ne.jp/kaiseh/20090113/1231864089 上の記事を見て、k-means++が面白そうだったので、ちょっとだけ試してみた。 k-meansは初期値に大きく依存するところが嫌い。初期値への依存度を軽減するために、初期値を変えて何回か試行してその中で一番良い結果のものを使用する、なんてことをしないといけない。そのため処理時間も馬鹿にならなくなってしまうので、ちょっとこれじゃあなあ…ということで使ってなかった。 でも今回のk-means++は初期値をうまく求めることで、精度と速度の向上が得られるらしい。これはうれしい! 論文著者のページにサンプルコードがあったので試してみようと思ったんだけど、MFCを使っているみたいで僕の環境ではコンパイルできず…。 http://www.stanford.edu/~darthur/kMeansppTest
集合知プログラミング を読んでいたら、K-means 法(K平均法)の説明が出てきました。K-means 法はクラスタリングを行うための定番のアルゴリズムらしいです。存在は知っていたんだけどいまいちピンときていなかったので、動作を理解するためにサンプルを作ってみました。クリックすると1ステップずつ動かすことができます。クラスタの数や点の数を変更して、RESET を押すと好きなパラメータで試すことができます。こうやって1ステップずつ確認しながら動かしてみると、意外に単純な仕組みなのが実感できました。K-means 法とはK平均法 - Wikipedia に詳しく書いてあるけど、もうすこしザックリと書くとこんなイメージになります。各点にランダムにクラスタを割り当てるクラスタの重心を計算する。点のクラスタを、一番近い重心のクラスタに変更する変化がなければ終了。変化がある限りは 2. に戻る。これ
K-means法は、入力データからK個のランダムな個体を初期クラスタの中心として選択し、以降、クラスタの重心を移動させるステップを繰り返すことでクラスタリングを行う非階層的手法です。K-means法はシンプルで高速ですが、初期値依存が大きいのが弱点で、不適切な初期値選択をすると間違った解に収束してしまいます。 以下は、Introduction to Information Retrievalの16章に出てくる例です。 {d1, d2, ..., d6}をK=2でクラスタリングする場合、{{d1, d2, d4, d5}, {d3, d6}}が大域最適解ですが、初期クラスタの中心をd2, d5で与えると、{{d1, d2, d3}, {d4, d5, d6}}という誤った解に収束してしまいます。 この問題を改善するK-means++という手法を見つけたので、試してみました。 K-means+
LSHは近似最近傍探索(Approximate Nearest Neighbor)アルゴリズムの一つ. 近似最近傍探索とは,簡単に言うとクエリqから半径(1+ε)内にある点vを探索すること. つまり,半径(1+ε)の点のうち,どれか1つでも探索できればおk. 言葉の意味そのままに最近傍探索(Nearest Neighbor)の条件を少し緩くした探索といえる. (実は,特徴ベクトルの次元がd=2の場合なら,ボロノイ図を使えば近似最近傍探索ができる) LSHはハッシュ関数を用いた確率的探索で近似最近傍探索を解く. そう,実はハッシュ関数を用いるということ以上に確率的探索ということに大きな意味がある.(これが自分にとってはかなりやっかいな問題) LSHでは,クエリqと近傍(半径(1+ε)以内)にある点ではハッシュ値が一致する確率が高く, クエリqと遠い位置にある点ではハッシュ値が一致する確率が低
リリース、障害情報などのサービスのお知らせ
最新の人気エントリーの配信
処理を実行中です
j次のブックマーク
k前のブックマーク
lあとで読む
eコメント一覧を開く
oページを開く