2021年7月21日のブックマーク (1件)

  • 「6年解けなかった構造があっさり」──タンパク質の“形”を予測する「AlphaFold2」の衝撃 GitHubで公開、誰でも利用可能に

    Alphabet傘下の英DeepMindが、遺伝子配列情報からタンパク質の立体構造を解析するAIAlphaFold v2.0」(以下、AlphaFold2)をGitHub上で無償公開し、ネット上で注目を集めている。Twitterを利用する生物系の研究者からは「革命的な成果だ」「これからの研究の前提が変わっていく」など、AlphaFold2の予測精度に対して驚きの声が相次いだ。 なぜAlphaFold2はこれほどの驚きや賞賛をもって迎えられているのか。タンパク質構造解析の難しさをひも解く。 未知の部分が多いタンパク質の構造 タンパク質は数十種類のアミノ酸からできており、配列によってさまざまな性質に変化する。例えば筋肉、消化酵素、髪の毛はそれぞれ役割が異なるが、いずれもタンパク質で作られている。タンパク質の構造が分かれば、生体内の化学反応の理解が進む。アルツハイマー型認知症やパーキンソン病

    「6年解けなかった構造があっさり」──タンパク質の“形”を予測する「AlphaFold2」の衝撃 GitHubで公開、誰でも利用可能に
    MetaVariable
    MetaVariable 2021/07/21
    これは応用分野の話なのでHPC基盤分野である富岳では~という指摘には一言「分野が違う」。一応、富岳にも深層学習環境はあるので同様の計算はできる。ただ、クラウドのGPU環境でやる方が諸々で手っ取り早いとは思う。