タグ

tensorflowに関するNagafuchiのブックマーク (2)

  • ディープラーニングの応用のための具体的方針まとめ - HELLO CYBERNETICS

    はじめに 目標の設定と指標の決定 目標の設定 指標の決定 評価指標に対する最低限の知識 機械学習における知識(補足) ニューラルネットワークの学習 最初に使うニューラルネットワーク 時間的にも空間的にも独立である複数の特徴量を持つデータ 空間の局所的な構造に意味のある多次元配列データ(例えば画像) 時間的な変動に意味のあるデータ(例えば音声、自然言語) ニューラルネットワークの細かい設定 ユニットの数と層の数 正則化 活性化関数 ドロップアウト バッチ正規化 学習の早期終了 性能が出ない場合 データの追加収集 ニューラルネットの設定をいじる 用いるニューラルネット自体を変更する 新たなニューラルネットワークの考案 コードを書くにあたって データ成形 結果を記録するコード フレームワークの利用 フレームワークの選択 ChainerとPyTorch TensorFlow Keras 最後に は

    ディープラーニングの応用のための具体的方針まとめ - HELLO CYBERNETICS
  • 文系社会人・Python初心者のTensorFlow学習方法 - Qiita

    短評 想像の3倍くらい時間をかけてしまいましたが、色々なことが目からウロコで大いに面白かったです。TensorFlowエンジニアの見習い小僧レベルにはなれた気がします。とはいえ、奥が深くて当に表面的な部分を学習しただけとも感じています。内部的な処理はわからないことだらけですし、応用どころか基もままならない状態。あとどのくらい時間をかければ、プロと胸を張って言えるレベルになれるかは、正直見当がつかないです・・・一方でそんな状態でもオリジナルのテーマでDeep Learningが実装できるのは、当にTensorFlowの凄さだと思います。あと、地味にAnacondaも便利で助けられました。 学習目的 現在および直近の仕事でDeep LearningやAIはおろか、機械学習すら使わないですが、「今後を踏まえて何かしなきゃ」という強い想いのもと学習しました。また、純粋に「面白そう」という気持

    文系社会人・Python初心者のTensorFlow学習方法 - Qiita
  • 1