タグ

MapReduceに関するRMS-099のブックマーク (2)

  • Apache CouchDB

    Data Where You Need It Apache CouchDB ™ lets you access your data where you need it. The Couch Replication Protocol is implemented in a variety of projects and products that span every imaginable computing environment from globally distributed server-clusters, over mobile phones to web browsers. Store your data safely, on your own servers, or with any leading cloud provider. Your web- and native a

  • MapReduceとパラレルRDBでベンチマーク対決、勝者はなんとRDB!

    大量のデータを処理する手法として登場したMapReduce。クラウドに対応した分散処理の定番として話題に上ることが増えてきました。 MapReduceは、大量のデータを分割し、分割したデータを分散したノードに投げてノードごとに処理を実行、結果を集約して最終的な答えを求める、といった手法です。 しかしMapReduceが登場する以前から商用レベルで使われていた分散処理手法があります。データを分散したデータベースに格納し処理を行うパラレル・リレーショナルデータベース(パラレルRDB)がその1つです。 パラレルRDBは、データを複数のデータベースに分散して配置、データベースごとに処理を行い、結果を求める手法です。中央に共有メモリを配置するなどの方法で分散したデータベース同士の連携を行うことが一般的です。 ではパラレル・リレーショナルデータベースはMapReduceより遅いのか? 劣るのか? 両者

    MapReduceとパラレルRDBでベンチマーク対決、勝者はなんとRDB!
    RMS-099
    RMS-099 2012/10/25
    「なぜパラレルRDBの方が速かったのか。論文では、Bツリーのインデックスによる高速化、最新のストレージ機構、圧縮機能、洗練された並列処理などを挙げています。」
  • 1