タグ

wikipediaと研究に関するSuperAlloyZZのブックマーク (10)

  • 真空チューブ列車 - Wikipedia

    真空チューブ列車の想像図 真空チューブ列車(しんくうチューブれっしゃ、英: Vactrain)は、内面が滑らかなチューブを空中、地下または海底に設置し、中を真空にして摩擦力と空気抵抗をゼロに近づけることにより、地球の重力や最小限のエネルギー付加によって物資を輸送するシステム。真空チューブ鉄道、真空チューブ輸送、真空列車ともいう。 概要[編集] 物体は、摩擦力や空気抵抗がゼロになれば、エネルギー保存の法則と慣性の法則により、起動時に付加されたエネルギーのみで永遠に動き続ける。輸送システムの発想はここから生まれた。 起動時のエネルギー付加の方法としては、リニアモーター、圧縮空気、ロケットエンジンなどの起動力を用いるほか、地球の重力を利用する方法も考えられている[1]。 地球の重力を用いる方法の原理[編集] 地球上の物体は、すべて地球の重力により位置エネルギーを持っており、地球中心より離れるほ

    真空チューブ列車 - Wikipedia
  • カリウムチャネル - Wikipedia

    構造[編集] カリウムチャネル KvAPの構造 脂質二重層が赤と青の線によって示されている。紫の球はカリウムイオンを示している。 カリウムチャネルの結晶構造は、初め放線菌由来のカリウムチャネルKcsAについてロデリック・マキノンらによって解かれた[5]。現在までに、ヒト由来のカリウムチャネル等多数のカリウムチャネルの結晶構造が報告されている。 カリウムチャネルは、イオン透過路を形成するポアドメインと刺激(膜電位、リガンド等)を受容するドメインから形成される。ポアドメインの構造はすべてのカリウムチャネルで高度に保存されており、刺激を受容するドメインはカリウムチャネル毎に多様な構造をとっている。 ポアドメインは対称な4量体として形成されている。ポアドメインを形成する各サブユニットは、2の膜貫通ヘリックスとそれをつなぐポアループ(Pループ)からなる。この4量体の中央にはイオン透過路が形成され、

    カリウムチャネル - Wikipedia
  • ネオジム磁石 - Wikipedia

    ネオジム磁石 HDDのヘッド駆動に使用されているネオジム磁石 ネオジム磁石(ネオジムじしゃく、英語: Neodymium magnet)とは、ネオジム、鉄、ホウ素(ボロン)を主成分とする希土類磁石(レアアース磁石)の一つである。以前から存在していたサマリウム-コバルト合金を超えて、永久磁石のうちで最も強力であり、更に素材が安価で大量製造可能であるので、個人用コンピューター(パソコン)時代の幕開けにも決定的な役割を果たし、風力発電機や電気自動車など、エコエネルギー技術を実現する中核的な材料として使われている[1]。1984年に日の住友特殊金属(現:プロテリアル)の佐川眞人によって発明された(ほぼ同時期にアメリカのゼネラルモーターズでも開発されていたが、粉末焼結製法を併せて開発したのは佐川が世界で最初であることが認められている[1])[2][3]。主相はNd2Fe14B。しばしば誤って「ネオ

    ネオジム磁石 - Wikipedia
  • マルコフ連鎖 - Wikipedia

    この記事は検証可能な参考文献や出典が全く示されていないか、不十分です。出典を追加して記事の信頼性向上にご協力ください。(このテンプレートの使い方) 出典検索?: "マルコフ連鎖" – ニュース · 書籍 · スカラー · CiNii · J-STAGE · NDL · dlib.jp · ジャパンサーチ · TWL(2018年1月) マルコフ連鎖(マルコフれんさ、英: Markov chain)とは、確率過程の一種であるマルコフ過程のうち、とりうる状態が離散的(有限または可算)なもの(離散状態マルコフ過程)をいう。また特に、時間が離散的なもの(時刻は添え字で表される)を指すことが多い[注釈 1]。マルコフ連鎖は、未来の挙動が現在の値だけで決定され、過去の挙動と無関係である(マルコフ性)。各時刻において起こる状態変化(遷移または推移)に関して、マルコフ連鎖は遷移確率が過去の状態によらず、現在

  • 集団的知性 - Wikipedia

    都市や文明といったものも、多くの「個」により形成される集団的知性と言う見方が出来る 集団的知性(しゅうだんてきちせい、英語:Collective Intelligence、CI)は、多くの個人の協力と競争の中から、その集団自体に知能、精神が存在するかのように見える知性である。Peter Russell(1983年)、Tom Atlee(1993年)、Howard Bloom(1995年)、Francis Heylighen(1995年)、ダグラス・エンゲルバート、Cliff Joslyn、Ron Dembo、Gottfried Mayer-Kress(2003年)らが理論を構築した。 集団的知性は、細菌、動物、人間、コンピュータなど様々な集団の、意思決定の過程で発生する。集団的知性の研究は、社会学、計算機科学、集団行動の研究[注 1]などに属する。 Tom Atlee らは、Howard

    集団的知性 - Wikipedia
  • 人工生命 - Wikipedia

    人工生命(じんこうせいめい)は、人間によって設計、作製された生命。生化学やコンピュータ上のモデルやロボットを使って、生命をシミュレーションすることで、生命に関するシステム(生命プロセスと進化)を研究する分野である。「人工生命」は1986年にアメリカの理論的生物学者、クリストファー・ラングトンによって命名された。人工生命は生物学的現象を「再現」しようと試みる点で生物学を補うものである[1]。また、人工生命(Artificial Life)を ALife と呼ぶことがある。手段によってそれぞれ、「ソフトALife」(コンピュータ上のソフトウェア)、「ハードALife」(ロボット)、「ウェットALife」(生化学)と呼ばれる[2]。 概要[編集] 一般には生命とはすなわち、(生物)分類学的な生物の生命のことであるが(近代以前の分類学である博物学の最上位の分類は生物と無生物(鉱物)という分類であっ

    人工生命 - Wikipedia
  • 人工免疫システム - Wikipedia

    人工免疫システム(じんこうめんえきシステム、英: Artificial Immune System, AIS)は、生物の免疫系の原理やプロセスにヒントを得たコンピュータシステムである。そのアルゴリズムは免疫系の学習と記憶の特性を問題解決に利用する。人工知能と一部のAISアルゴリズムを組み合わせたものもあり、遺伝的アルゴリズムと密接に関連している。 AISでシミュレートされるプロセスとしては、B細胞のパターン認識や過剰変異やクローン選択、T細胞の negative selection、親和性成熟、免疫ネットワーク理論などがある。 項目では、これらのプロセスのアルゴリズム的実装に関するものである。その基盤となる生物学的理論については、免疫系を参照されたい。 パターン認識[編集] 抗体と抗原は一般に一連の属性で表される。属性はバイナリ、整数、実数などが多いが、基的にどんなデータでもよい。マッ

  • 群知能 - Wikipedia

    群知能(ぐんちのう、むれちのう、swarm intelligence, SI)は、分権化し自己組織化されたシステムの集合的ふるまいの研究に基づいた人工知能技術である。「群知能」という用語は、1989年 Beni および Wang が提唱したもので、セルラーロボットシステムに関して使ったのが最初である[1](セル・オートマトン、進化的計算も参照されたい)。 SIシステムは一般に単純なエージェントやボイドの個体群から構成され、各個体はローカルに互いと、そして彼らの環境と対話する。個々のエージェントがどう行動すべきかを命じている集中的な制御構造は通常存在しないが、そのようなエージェント間の局所相互作用はしばしば全体の行動の創発(emergence)をもたらす。このようなシステムの自然界の例として、アリの巣、鳥の群れ、動物の群れ、細菌のコロニー、魚の群れなどがある。[2] 群ロボット工学は群知能の

  • 隠れマルコフモデル - Wikipedia

    隠れマルコフモデル(かくれマルコフモデル、英: hidden Markov model; HMM)は、確率モデルのひとつであり、観測されない(隠れた)状態をもつマルコフ過程である。 概要[編集] 同じマルコフ過程でも、隠れマルコフモデルより単純なマルコフ連鎖では、状態は直接観測可能であり、そのため、状態の遷移確率のみがパラメータである。一方、隠れマルコフモデルにおいては、状態は直接観測されず、出力(事象)のみが観測される。ただしこの出力は、モデルの状態による確率分布である。従って、ある隠れマルコフモデルによって生成された出力の系列は、内部の状態の系列に関する何らかの情報を与えるものとなる。「隠れ」という語はモデルが遷移した状態系列が外部から直接観測されないことを指しており、モデルのパラメータについてのものではない。たとえパラメータが既知であっても隠れマルコフモデルと呼ばれる。隠れマルコフモ

    隠れマルコフモデル - Wikipedia
  • カオスの縁 - Wikipedia

    カオスの縁(カオスのふち、英語: edge of chaos)とは、クリストファー・ラングトンにより発見され、ノーマン・パッカードにより名付けられた、セルオートマトンにおける概念[1]。振る舞いが秩序からカオスへ移るようなシステムにおいて、秩序とカオスの境界に位置する領域[2]。複雑系や人工生命、生命の進化などの研究において着目されてきた[3]。理論生物学においては、スチュアート・カウフマンによる、生命の発生と進化には自然淘汰の他に自己組織化が必要であり、進化の結果、生命は「カオスの縁」で存在するという仮説がよく知られる[4][5]。 セル・オートマトン[編集] 1980年代初頭からスティーブン・ウルフラムは1次元セル・オートマトンのルール(遷移関数)ごとの挙動を調査し、その挙動を以下のように4つにクラス分けした[6][7]。 クラスI:均一な一定状態に漸近する挙動 クラスII:周期的な状

    カオスの縁 - Wikipedia
  • 1