概要 オンラインでの分類学習の世界では,CWが非常に強力なアルゴリズムとして注目されています.特に,その圧倒的な分類精度及び収束速度は圧巻の一言であり,自然言語処理を中心に様々な分野で応用例や派生アルゴリズムが提案されています*1. 一方で,ノイズデータのが混入していた場合に精度がガタ落ちする性質がCWの重大な欠点として多くの人から指摘されていました.ノイズが予め取り除かれている実験設定ならば良いのですが,ノイズが含まれている可能性の高い実データにはCWは中々不便.この問題を解決するため,ノイズ耐性の強いCW系アルゴリズムの決定版(?)として,SCW (Soft Confidence-Weighted)アルゴリズムがICML2012という会議で提案されました.本エントリでは,SCWの紹介を行います. Exact Soft Confidence-Weighted Learning, Wang