タグ

algorithmとmysqlに関するa2ikmのブックマーク (2)

  • RDB - 実例で学ぶ、JOIN (NLJ) が遅くなる理屈と対処法 - Qiita

    "Nested Loop Joinしか取り上げて無いのにタイトルが大きすぎないか" と指摘を頂いたので、タイトルを修正しました。Merge JoinとHash Joinのことはまた今度書こうと思います。 「JOINは遅い」とよく言われます。特にRDBを使い始めて間がない内にそういう言説に触れた結果「JOIN=悪」という認識で固定化されてしまっている人も多いように感じています。 たしかに、JOINを含むようなSELECT文は、含まないものに比べて重たくなる傾向があることは事実です。また、質的に問い合わせたい内容が複雑で、対処することが難しいものも存在します。しかし、RDBの中で一体どういうことが起きているのかを知り、それに基いて対処すれば高速化できることも少なくないと考えています。 稿では、JOINの内部動作を解説した上で、Webサービスを作っているとよく出てくるJOIN SQLを例題に

    RDB - 実例で学ぶ、JOIN (NLJ) が遅くなる理屈と対処法 - Qiita
  • インデックスの基礎知識

    ■ インデックスとは データベースの世界で、インデックス(索引)とはテーブルに格納されているデータを 高速に取り出す為の仕組みを意味します。 インデックスを適切に使用することによってSQL文の応答時間が劇的に改善 される可能性があります。 インデックスにはB-Treeインデックスをはじめ、ビットマップインデックス、 関数インデックスなどの種類がありますが、ここでは最も一般的に使われ、かつ ほとんどのDBMSでサポートされているB-Treeインデックスについて解説します。 ※ CREATE INDEX文でオプションを指定しない場合は通常B-Treeインデックスが 作成されます。 ■ B-Treeインデックスのしくみ B-Tree(Balanced Tree)インデックスは次のようなツリー状の構造になっています。 ツリーの先頭はヘッダブロックと呼ばれています。ヘッダブロックでは、キー値の 範囲

  • 1