タグ

ブックマーク / qiita.com/ageprocpp (2)

  • 最短経路問題総特集!!!~BFSから拡張ダイクストラまで~ - Qiita

    的アルゴリズム(幅優先探索など)から応用(経路復元、拡張ダイクストラなど)まで、最短経路問題に関するアルゴリズムを総特集しました。 基的なグラフ理論の用語については、次を参考にしてください。 グラフ理論 用語集 queueなどのデータ構造の用語については、次のスライドの後半を参考にしてください。 C++ STL講習会 by @e869120 最短経路問題とは 一般的に、次のような問題とされます。 $V$ 頂点と $E$ 辺からなるグラフが与えられる。頂点 $u$ と 頂点 $v$ を結ぶパスのうち、重みの総和が最も小さいものはどれか。 始点を固定して他のすべての頂点との対について最短経路問題を解く場合や、任意の2頂点の対について解く場合などが実際には多いです。 実社会とも強く密着した問題のため、古くからたくさん効率的な解法が考えられてきました。 今回はそれらを紹介しつつ、細かいテクニ

    最短経路問題総特集!!!~BFSから拡張ダイクストラまで~ - Qiita
  • 調和級数などのはなし - Qiita

    今日は、競プロの計算量解析でよく出てくる、調和級数と割り算で出てくる項数の話をします。 計算量解析に失敗すると、実は解ける解法なのに解析に失敗したせいで解けないと思い込んでしまい、解かなかった、みたいなことが起こりかねないので、特に非直感的なこの2つについて押さえておきましょう。 調和級数とは、$\sum_{n=1}^k \frac{1}{n}$ で表される級数です。 $k \rightarrow \infty$ とした時に正の無限大に発散することが知られていますが、発散は非常に遅いです。 さて、この調和級数は計算量解析にしばしば登場します。 1からNまでの間隔で長さNの数列を見ていく、みたいな処理の計算量見積もりには調和級数に関する知識が欠かせません。 先ほど述べたように調和級数の発散は非常に遅く、先頭 $N$ 項までの和は $\log N+1$ より小さいことが知られています。以下にこ

    調和級数などのはなし - Qiita
  • 1