www.amazon.co.jp 表題の書籍が技術評論社より発売されることになりました。執筆にご協力いただいた方々には、あらためてお礼を申し上げます。販売開始に先立って、「はじめに」「目次」「図表サンプル」を掲載させていただきますので、先行予約される方の参考にしていただければと思います。 はじめに 「Q LearningとSARSAの違いを説明してください。」皆さんは、この質問に即答できるでしょうか? 本書を読めば、自信を持って答えられます! —— と、謎の宣伝文句(?)から始まりましたが、少しばかり背景を説明しておきましょう。 2015年に『ITエンジニアのための機械学習理論入門』(技術評論社)を出版させていただいた後、驚くほどの勢いで機械学習の入門書が書店にあふれるようになりました。そしてまた、回帰モデルによる数値予測、分類モデルによる画像データの識別など、教師データを用いた機械学習モ
We are pleased to inform you that we have launched a completely new translation system that represents another quantum leap in translation quality. The neural networks we use are far superior to previous technologies and you can now test and use them free of charge at www.DeepL.com. We already made some headlines in 2017 when we released DeepL Translator, which was superior in quality to translati
1 はじめに 最近、我々+数名でスパースモデリングという分野を勉強しています。詳細はまた別の記事にて紹介するにして、今回はスパースモデリングの前段階に当たる リッジ回帰(ridge regresion) に脚光を当てます1。 読者には釈迦に説法かもしれませんが、リッジ回帰は L2 正則化とも呼ばれ機械学習の中でも非常にスタンダードな概念の一つになっています。しかし専門的に正則化法を扱ってみて、案外知らなかったことを知れたのでまとめました。 まず、リッジ回帰での損失関数は以下のような式で記述されます。 \begin{align} E = (y - X \vec{w})^2 + \alpha \vec{w}^T \vec{w} \end{align} 上記の損失を最小化するように係数の重みベクトル \(\vec{w}\) を推定します。解析的には \(\vec{w}\) について微分をしたもの
元ネタ incompleteideas.net ポイント ・学習の過程がステップバイステップで理解できる(目で見える)サンプルを示すことで、「なぜそれでうまく学習できるのか」を理解することを目標とする。 ・アルゴリズムを愚直に実装したコードを示すことで、数式ではなく、コードを通してアルゴリズムを理解する。 Tabular method Multi-arm bandit による導入 MDPの枠組みは一旦無視して、強化学習のポイントとなる「考え方」を理解する ・Exploitation - Exploration のバランスが必要。典型的には ε - greedy を利用する。 ・環境から収集したデータを元に、行動の価値を見積もる価値関数を構成する。 ・データ収取と並行して、価値関数を逐次更新する。 ・逐次更新の方法は、一義的に決まるものではないが、「差分を一定の重みで加えて修正する」という考
前回の続き。将棋AIで最初に大規模機械学習に成功させたBonanzaの開発者である保木さんのインタビューがちょうどYahoo!ニュースのトップ記事として掲載されたところなので、今回はBonanzaの機械学習について数学的な観点から解説してみたいと思います。 Bonanzaの保木さんのインタビュー記事 プロ棋士に迫ったAI「Bonanza」 保木邦仁「将棋を知らないから作れた」 https://news.yahoo.co.jp/feature/1712 BonanzaのGPW発表スライド とは言え、Bonanzaで使われている機械学習の技法は、いまどきの機械学習とは少し毛色が異なるので心の準備が必要です。 まず、保木さんのGPW(ゲームプログラミングワークショップ)での発表スライド、以前はBonanzaの公式サイトからダウンロードできたのですが、Bonanzaの公式サイトがジオシティーズにあ
概要 確率予測とCalibration(キャリブレーション)に関する勉強会に参加したので、学んだことの一部と、自分で調べてみたことについてまとめました。 概要 Calibrationとは Calibration Curve Calibrationの方法 Sigmoid / Platt Scale Isotonic Regression 確率予測に使われる評価指標 Brier Score ECE コード 不均衡データに対するCalibration LightGBMにCalibrationは不要か NNにCalibrationは不要か 追記 : Calibrationの検討について 追記 : 発表スライドについて 終わり techplay.jp 勉強会で使われていた言葉を、自分なりの言い方に変えています。 間違いがありましたら、コメントいただけたら嬉しいです。 Calibrationとは 普通
Deleted articles cannot be recovered. Draft of this article would be also deleted. Are you sure you want to delete this article? AIを使って映像から通行量(歩行者量)を調査するソフトを作ったけど、最初は解析精度が低くて使い物にならず、いろいろ苦労してカウントの精度を上げた話です。車両の映像解析をした時にも苦労しましたが、歩行者は車両より小さい上バラバラの方向に移動するので、まったく別の苦労がありました。解析結果のムービーはこちら。映像解析は面白い&奥深いですねえ。 サマリー ・歩行者量を正しくカウントするための要件 ・物体検出の手法と学習モデルの選定 ・軌跡の描画機能によるノイズの発見と除去 ・トラッキング方法の検証と機能追加 ・正しいカウントを実現するための機
ベイズ統計・ベイズ機械学習を始めよう コンピュータやネットワークの技術進化により,これまでにないほどの多種多様なデータを取り扱う環境が整ってきました.中でも統計学や機械学習は,限られたデータから将来を予測することや,データに潜む特徴的なパターンを抽出する技術として注目されています.これらのデータ解析を行うためのツールはオープンソースとして配布されていることが多いため,初学者でも手軽に手を出せるようになってきています. しかし,データ解析を目的に合わせて適切に使いこなすことは依然としてハードルが高いようです.この原因の一つが,統計学や機械学習が多種多様な設計思想から作られたアルゴリズムの集合体であることが挙げられます.毎年のように国際学会や産業界で新たな手法が考案・開発されており,一人のエンジニアがそれらの新技術を1つ1つキャッチアップしていくのは非常に困難になってきています. 1つの解決策
Deleted articles cannot be recovered. Draft of this article would be also deleted. Are you sure you want to delete this article? 概要 一昨年くらいに書いて社内サイトに放置していましたがせっかくなので公開します. ほぼ以下のスライドの訳です (構成を結構変えているので翻訳というより翻案?) HJvanVeen の "Feature Engineering" https://www.slideshare.net/HJvanVeen/feature-engineering-72376750 このスライドは網羅性ならばちょっとした書籍よりも充実していると思います. しかしスライドなのでかなり簡素な記述でわかりにくい箇所も多いです. そこで補足説明を適宜補ったり, おかし
ニューラルネットワークって何かな〜って調べていたら普遍性定理(universal approximation theorem)という面白そうなものを見つけたのでCybenkoさんの有名な論文で証明を追ってみました。日本語でこの定理の証明まで書いてくれているところはざっと見た感じ無かったのでTeX打ちの練習も兼ねてQiitaに纏めてみようってことでこの記事を書きました。この記事ではCybenkoさんの論文を少し一般化した普遍性定理を述べます。証明はほとんどCybenkoさんによる証明に基づいています(一部修正しているくらい)。 この記事の目的は皆さんに普遍性定理の内容と証明を伝えることなのですが、証明に使う数学はそれなりに高級で誰でも読めるように書くのは難しかったので、以下に挙げる3つの分野すべてに少しでも触れたことがある人を読者として想定しています。 位相空間論 測度論・積分論 関数解析学
2018年3月29日、株式会社サイバーエージェントが主催するイベント「春の機械学習祭り 〜Data Engineering & Data Analysis WS#4〜」が開催されました。サイバーエージェントのデータ分析基盤とデータ活用、およびそれらの技術を共有する本イベントでは、秋葉原ラボ所属メンバーを中心に基盤と分析について具体的かつ実践的な技術を紹介します。プレゼンテーション「大規模分散深層学習とChainerMNの進歩と課題」では、ディープラーニングのフレームワークChainerを開発する株式会社Preferred Networksの秋葉拓哉氏が登場。分散機械学習の仕組みや現在の潮流について語ります。 オープンソースのDeep Learning Framework「Chainer」 秋葉拓哉氏(以下、秋葉):ChainerとChainerMNについても少し紹介したいと思います。時間が
2015 年 4 月 12 日に Chainer の最初のコードをコミットしてから,およそ 4 年半と少しが経ちました.はじめのはじめは軽い気持ちで書きはじめたコードでしたが,今では一線級の研究を立派に支えるまでになりました.深層学習フレームワークの世界も当時とは様変わりして(当時は TensorFlow も PyTorch もなかったわけですから,本当に変わりました),思えば遠くにきたものです. 今日,PFN は社内の研究開発に用いる主なフレームワークを PyTorch に移行すると発表しました.会社にとってももちろんですが,業務としてはこの 4 年半,Chainer 一筋でやってきた自分にとっては特に,大きな転換点です. まず率直な感想として,Chainer の開発は本当に楽しかったです.書きはじめた頃は,深層学習フレームワーク競争の真っ只中で,Theano の上に乗っかるフレームワー
xgboostでどのような処理が行われているのかを、メモの意味でまとめてみました。 たぶん続きます。なお、あくまで私の理解であり、正確性の保証は無いのでご注意下さい。 ソースコードは以下を参照しています。 https://github.com/dmlc/xgboost (release_0.90を参照) 前提 以下の前提とする: ブースター(booster)はgbtree 決定木のアルゴリズム(tree_method)はexact カスタム目的関数を使わない GPUの使用、マシン並列を行わない xgboostでは、tree_methodオプションで決定木を作成するアルゴリズムを選択できる。 デフォルトではデータ数が一定未満の場合にはexact、それ以上であればapproxが適用される。 (4UL << 20UL = 4194304件が境目、GBTree::PerformTreeMethod
概要 ナイーブベイズ分類器(ベイジアンフィルター)のアルゴリズムを具体的な数値を使って説明します。また、Pythonで実装してみました。自分の勉強メモのつもりで書いたのですが、他の方の役にも立てたら嬉しいです。 ナイーブベイズ分類器って? あるデータ(文章)をどのカテゴリーに属するのかを判定させる、機械学習の教師あり学習の手法の一つです。 スパムメールフィルターやWEBニュース記事のカテゴライズによく使われています。 難易度 ベイズの定理を利用した単純な手法で、難易度は低です。 なるべく数式を使わないで説明してみました。 ナイーブベイズ分類器の計算 対象文章がどのカテゴリーに分類されるかを決めるための計算ロジックを、具体的な数値を使って説明します。 学習データが以下である場合、対象文章がどのカテゴリーに分類されるか計算します。 学習データ サッカー [ ボール | スポーツ | ワールド
リリース、障害情報などのサービスのお知らせ
最新の人気エントリーの配信
処理を実行中です
j次のブックマーク
k前のブックマーク
lあとで読む
eコメント一覧を開く
oページを開く