Pythonでマルコフ連鎖モンテカルロ法を実装して解説してみる記事です 『計算統計 II マルコフ連鎖モンテカルロ法とその周辺』のp16に この節の内容を実感するために一番良い方法は、どんな計算機言語でもいいから、 ここで述べたことを白紙から実装してみることである。 という事で、素直にやってみました。せっかくなのでコードと仕組みの解説をしようと思います。 先に結果のアニメーションとプロットを表示しておきます (Burn-in期間:1-30 [この期間のデータは色を薄くしてプロットしています。], 棄却含め150回のサンプリングまで) 10,000回繰り返してサンプリングした結果をプロット。(うち、Burn-in: 2,000回) はじめに まず最初に必要なライブラリのインポートを行います。 import numpy as np import numpy.random as rd impor
