タグ

PythonとProbabilityに関するagwのブックマーク (5)

  • 【統計学】マルコフ連鎖モンテカルロ法(MCMC)によるサンプリングをアニメーションで解説してみる。 - Qiita

    Pythonでマルコフ連鎖モンテカルロ法を実装して解説してみる記事です 『計算統計 II マルコフ連鎖モンテカルロ法とその周辺』のp16に この節の内容を実感するために一番良い方法は、どんな計算機言語でもいいから、 ここで述べたことを白紙から実装してみることである。 という事で、素直にやってみました。せっかくなのでコードと仕組みの解説をしようと思います。 先に結果のアニメーションとプロットを表示しておきます (Burn-in期間:1-30 [この期間のデータは色を薄くしてプロットしています。], 棄却含め150回のサンプリングまで) 10,000回繰り返してサンプリングした結果をプロット。(うち、Burn-in: 2,000回) はじめに まず最初に必要なライブラリのインポートを行います。 import numpy as np import numpy.random as rd impor

    【統計学】マルコフ連鎖モンテカルロ法(MCMC)によるサンプリングをアニメーションで解説してみる。 - Qiita
  • How to Write a Spelling Corrector

    One week in 2007, two friends (Dean and Bill) independently told me they were amazed at Google's spelling correction. Type in a search like [speling] and Google instantly comes back with Showing results for: spelling. I thought Dean and Bill, being highly accomplished engineers and mathematicians, would have good intuitions about how this process works. But they didn't, and come to think of it, wh

  • プログラマーのための確率プログラミングとベイズ推定

    プログラマーのための確率プログラミングとベイズ推定¶PythonとPyMCの使い方¶ベイズ推定(Bayesian method)は,確率推論のためのもっとも適切なアプローチであるにもかかわらず,書籍を読むとページ数も数式も多いので,あまり積極的に読もうとする読者は少ないのが現状である.典型的なベイズ推定の教科書では,最初の3章を使って確率の理論を説明し,それからベイズ推論とは何かを説明する.残念ながら多くのベイズモデルは解析的に解くことが困難であるため,読者が目にするのは簡単で人工的な例題ばかりになってしまう.そのため,ベイス推論と聞いても「だから何?」と思ってしまうのである.実際,著者の私がそう思っていたのだから. 最近の機械学習のコンテストで良い成績を収めることができたので,私はこのトピックを復習しようと思い立った. 私は数学には強い方である.しかしそれでも,例題や説明を読んで頭の中で

  • ランダムだと!?!?(ガタッ - 西尾泰和のはてなダイアリー

    確かに、このテンプレには僕も飽きている: onk:「リンゴが10個あります。ランダムに3人で取り分けなさい」ってどうコードに落とすと綺麗かな。。 yoshiori: @onk ランダムだと!?!? onk: @yoshiori 擬似ランダムでいいです yoshiori: @onk ふう、焦らせやがって……(俺の中でここまでテンプレ) yoshiori: もう、「ランダム」という言葉に反応してしまうのはネタでも良くない気がしてきた そこで新しいマサカリを考えてみた。「お前はなにを等確率にしたいんだ!?!?」 2個のりんごをAさんとBさんの2人に配ることを考えてみよう。全部で4通りの配り方がある。(A, A), (A, B), (B, A), (B, B)の4つだ。 この4通りを等確率にしたいのならば、それぞれのりんごについて1/2の確率でAとBに振り分ければ良い。ちなみにPythonのran

    ランダムだと!?!?(ガタッ - 西尾泰和のはてなダイアリー
  • 第7回 代表的な離散型確率分布 | gihyo.jp

    今回は、前回導入したNumpy、そしてグラフを描画するmatplotlibを使って、いくつかの代表的な分布を紹介していきます。 第5回「「よく使う分布」はどうしてよく使う?」の項でも代表的な分布が紹介されていました。そこでは、“⁠この状況(モデル)では、この分布を使う⁠”というパターンを想定する、それが“⁠よく使う分布⁠”がいくつも存在する理由と言及されていましたが、どのような状況でどのような分布を使えばいいのでしょうか? 実際、どのような状況のときに、どのような分布を使うと説明しやすいかを考えながら、みていきましょう。 matplotlibのインストール matplotlibはpythonとNumpyのための高機能なグラフ描画ライブラリです。今後もグラフを描画することがあるかと思いますので、ここでインストールしておきましょう。 公式サイトのダウンロードから各OS向けのパッケージを入手して

    第7回 代表的な離散型確率分布 | gihyo.jp
  • 1