SVMを学びたい人にとっては「サポートベクターマシン入門」通称「赤本」は最適な入門書であるといえる。理論から実践までバランスよく解説されており、本書を読むだけでSVMの実装が可能になる。 しかし本書はSF小説を彷彿とさせる独特な翻訳の文体のため機械学習に不慣れな読者にとっては読みこなすのは苦しい戦いとなる。本来なら原書をオススメしたいところだが、そうはいっても英語はちょっとという人も多いはず。 そこで本記事では赤本のオススメな読み方を紹介してみる。 1.「わかパタ」で準備運動をしよう 泳ぎのうまい人でもいきなり水に飛び込むのは危険。まずは準備運動をして体を温める。これには「わかりやすいパターン認識」がオススメ。とりあえず2章まで、余裕があれば3章まで読んでおけば充分。 2.赤本を枕元において一晩寝よう さて準備運動が済んだら早速赤本にトライ!したいところだが赤本の放つ瘴気で心を蝕まれないよ
サポートベクターマシン(以下 SVM) とは ・ニューラルネットワークの一種 ・教師ありクラスタリング SVM の基本的な考え方 ・元々2クラスの線形分離手法として提案される ・単層パーセプトロンに似ているが、SVM はマージン最大化という手法をとっているのがポイント。 ・マージン最大化とは、超平面と学習データの隙間となるマージンをなるべく大きく取ろうというもの。 (ここでいう超平面とは、2つのクラスにぶった切る平面のこと) ・ちなみに超平面と、ちょうどマージンの分だけ離れている学習データをサポートベクトルという。 ・このマージン最大化という考えを取り入れることによって、テストデータの識別精度を高めている。 SVM の発展 ・線形分離不可能な問題への対応 - ソフトマージン(学習データが多少マージンにくい込んだり、反するクラスの空間にくい込んだりしても許す)で対応
3日で作る高速特定物体認識システム 黄瀬浩一,岩村雅一 (大阪府立大学) 1.システム構成 2.システムの作成 2.1 特徴抽出モジュール 利用するプログラム A C implementation of SIFT by Rob Hess 環境設定 OpenCV 全体のページ インストールの方法: 例えばこのページ. Visual Studio(2005, or 2008) 設定の方法: 例えばこのページ. 参考文献 藤吉先生による日本語の解説: 分かりやすい. Wikipedia: リンクが豊富. Lowe教授のページ: 本家.手軽に試せるプログラムもある.Matlabバージョンは非常に簡単. 2.2 物体モデル 物体モデルといっても特別な仕掛けがあるわけではなく, <物体ID> <特徴ベクトル(128個の数字)> が特徴ベクトルの個数だけ並んだ1つのファイルです. x行目は,特徴ベクトル
General Links: Pattern Recognition: Pattern Recognition Course on the Web (by Richard O. Duda) Introduction to Machine Learning (by Nils J. Nilsson) Image Processing Course Classification Society of North America The Pattern Recognition Files Pattern Recognition Journals Machine Learning Resources Morphing Bibliography of Mark Grundland Neural Network Information Neural Network FAQ's Applets for N
リリース、障害情報などのサービスのお知らせ
最新の人気エントリーの配信
処理を実行中です
j次のブックマーク
k前のブックマーク
lあとで読む
eコメント一覧を開く
oページを開く