State–action–reward–state–action (SARSA) is an algorithm for learning a Markov decision process policy, used in the reinforcement learning area of machine learning. It was proposed by Rummery and Niranjan in a technical note[1] with the name "Modified Connectionist Q-Learning" (MCQ-L). The alternative name SARSA, proposed by Rich Sutton, was only mentioned as a footnote. This name reflects the fac
最強最速アルゴリズマー養成講座: そのアルゴリズム、貪欲につき――貪欲法のススメ アルゴリズムの世界において、欲張りであることはときに有利に働くことがあります。今回は、貪欲法と呼ばれるアルゴリズムを紹介しながら、ハードな問題に挑戦してみましょう。このアルゴリズムが使えるかどうかの見極めができるようになれば、あなたの論理的思考力はかなりのレベルなのです。(2010/9/4) 最強最速アルゴリズマー養成講座: 病みつきになる「動的計画法」、その深淵に迫る 数回にわたって動的計画法・メモ化再帰について解説してきましたが、今回は実践編として、ナップサック問題への挑戦を足がかりに、その長所と短所の紹介、理解度チェックシートなどを用意しました。特に、動的計画法について深く掘り下げ、皆さんを動的計画法マスターの道にご案内します。(2010/5/15) 最強最速アルゴリズマー養成講座: アルゴリズマーの登
2枚の画像をかなり高精度に合わせこむ、最近注目の方法ということで作ってみました。 やっていることはシンプルなんですが、よく考えてあるな、という感じです。 平行移動のずれを求める場合と、回転角のずれを求める場合(回転不変位相限定相関RIPOC)を 作ってみました。 【平行移動の場合(従来方法)】 通常、2枚の画像の位置ずれを求める場合は、画像の相関をとることがよく行われます。 この場合、2枚の画像をずらしながら相関値を求めてもいいですが、 FFTで周波数空間に変換して、両者の積をとって、逆FFTしても計算できます。 例) 例えばこの2枚の画像の相関マップ(相関が高いほど明るい)は次のようになる。 位置ずれ量はこの相関値のピークを求めることで特定できます。 サブピクセル精度で位置ずれを求める場合は、最大値付近を2次曲面等で当てはめて求めます。 【平行移動の場合(POC)】 これに対して、位相限
About Project Euler What is Project Euler? Project Euler is a series of challenging mathematical/computer programming problems that will require more than just mathematical insights to solve. Although mathematics will help you arrive at elegant and efficient methods, the use of a computer and programming skills will be required to solve most problems. The motivation for starting Project Euler, and
Rosetta Code is a programming chrestomathy site. The idea is to present solutions to the same task in as many different languages as possible, to demonstrate how languages are similar and different, and to aid a person with a grounding in one approach to a problem in learning another. Rosetta Code currently has 1,303 tasks, 379 draft tasks, and is aware of 953 languages, though we do not (and cann
2006年のデータマイニング学会、IEEE ICDMで選ばれた「データマイニングで使われるトップ10アルゴリズム」に沿って機械学習の手法を紹介します(この論文は@doryokujin君のポストで知りました、ありがとうございます!)。 必ずしも論文の内容には沿っておらず個人的な私見も入っていますので、詳細は原論文をご確認下さい。また、データマイニングの全体観をサーベイしたスライド資料がありますので、こちらも併せてご覧下さい。 データマイニングの基礎 View more presentations from Issei Kurahashi 1. C4.5 C4.5はCLSやID3といったアルゴリズムを改良してできたもので、決定木を使って分類器を作ります。決定木といえばCARTが良く使われますが、CARTとの違いは以下のとおりです。 CARTは2分岐しかできないがC4.5は3分岐以上もできる C
初出: C MAGAZINE 1996年8月号 Updated: 1996-09-21 [←1つ前] [→1つ後] [↑質問一覧] [↑記事一覧] [ホームページ] 今回は、よく知られているけどちょっと分かりにくいアルゴリズム、あるいは、 今までの連載で出てきたトリッキーなコードについて、どのような原理で動作す るのかを紹介してみようと思います。ただし、一般論として、凝ったコードより も分かりやすいコードの方が価値がある場合が多いということも頭に入れておい てください。 凝ったアルゴリズム Q 【曜日の求め方】 Comp.lang.c FAQ listを見ると、曜日を求める関数として次のものが紹介され ていた。 dayofweek(y, m, d) /* 0 = Sunday */ int y, m, d; /* 1 <= m <= 12, y > 1752 or so */ { stat
作成日:2004.05.04 修正日:2012.09.01 このページは 2003年の9/11、9/28 の日記をまとめて作成。 はじめに PowerPC 系や Alpha などには population count と呼ばれるレジスタ中の立っているビット数を数える命令が実装されている。 集合演算を行うライブラリを実装したい場合などに重宝しそうな命令である。 職場でこの population count 命令について話をしているうちにビットカウント操作をハードウェアで実装するのは得なのか?という点が議論になった。 CPU の設計をできるだけシンプルにするためには、複雑で使用頻度の低い命令は極力減らした方がよい。 例えば SPARC は命令セット中にビットカウント演算があるが、CPU 内には実装しないという方針をとっている(population 命令を実行すると不正命令例外が発生し、それを
単純な深さ優先探索では初期状態から最終状態までの最短経路を求めることは不可能でした。しかし、深さを制限した深さ優先探索(深さ制限探索)を繰り返すことによって最短経路を求めることができます。つまり深さの制限 d を増加させながら深さ制限探索を繰り返します。このアルゴリズムを反復深化といいます。 反復深化及び深さ制限探索では高速化を図るために探索空間(探索木)の枝を刈ることが重要になります。探索アルゴリズムでは、現在の状態 n から最終状態までの最短経路コスト h を見積もることができれば枝を刈ることができます。つまり、現在の状態の深さ g に「ここからあと最低でも h 回の状態変化は必要だろう」というコストh を加えた値が深さの制限 d を超えた場合、そこで探索を打ち切ることができます。h は見積もりであって正確な値である必要はありません。h の値が大きいほど探索の速度は上がりますが、大きく
リリース、障害情報などのサービスのお知らせ
最新の人気エントリーの配信
処理を実行中です
j次のブックマーク
k前のブックマーク
lあとで読む
eコメント一覧を開く
oページを開く