CodeZine編集部では、現場で活躍するデベロッパーをスターにするためのカンファレンス「Developers Summit」や、エンジニアの生きざまをブーストするためのイベント「Developers Boost」など、さまざまなカンファレンスを企画・運営しています。
ヤフー株式会社は、2023年10月1日にLINEヤフー株式会社になりました。LINEヤフー株式会社の新しいブログはこちらです。LINEヤフー Tech Blog こんにちは、地域サービス事業部の吉田一星です。 今回は、Hadoopについて、Yahoo! JAPANでの実際の使用例を交えながら書きたいと思います。Hadoopとは、大量のデータを手軽に複数のマシンに分散して処理できるオープンソースのプラットフォームです。 複数のマシンへの分散処理は、プロセス間通信や、障害時への対応などを考えなければならず、プログラマにとって敷居が高いものですが、 Hadoopはそういった面倒くさい分散処理を一手に引き受けてくれます。 1台では処理にかなり時間がかかるような大量のデータも、複数マシンに分散させることで、驚くべきスピードで処理を行うことができます。 例えば、今まで1台でやっていた、あるログ集計処理
大規模なデータを分散処理するための技術と言えばMapReduceだ。通常の企業では難しい、数万台のネットワークコンピューティングを駆使したデータ処理を可能にするGoogleの根幹をささせる一技術になっている。 処理の一覧 そんなMapReduceはオープンソースで実装されるものもあるが、本格的に実装するにはハードウェアやインフラの存在が必要になる。だが、これを使えばハードウェアも無用でMapReduceを体感できる。 今回紹介するオープンソース・ソフトウェアはHTTPMR、Google App Engine上で動作するMapReduce実装だ。 HTTPMRはGoogle App Engine上で動作するライブラリで、HTTPベースでMapReduceのように分散処理を行えるようになる。リクエストはランダムに選ばれたコンピュータ上で実行される。各リクエストは数秒でタイムアウトするようになっ
リリース、障害情報などのサービスのお知らせ
最新の人気エントリーの配信
処理を実行中です
j次のブックマーク
k前のブックマーク
lあとで読む
eコメント一覧を開く
oページを開く