ブックマーク / zenn.dev/google_cloud_jp (1)

  • Gemini 1.5 のロングコンテキストを活かして AI を育てるアプローチ 〜 RAG の限界を軽やかに突破するために

    Gemini 1.5 のロングコンテキストを活かして AI を育てるアプローチ 〜 RAG の限界を軽やかに突破するために はじめに この記事では、Gemini 1.5 のロングコンテキストを活かして LLM を用いた AI システムを段階的に育てるアプローチを説明します。後半では、RAG システムの導入ハードルを下げるためにこのアプローチを適用するイメージをサンプルコードとあわせて紹介します。 ここではまず、前提知識となるグラウンディングや RAG の仕組みを説明します。 グラウンディングと RAG の違いについて LLM の業務活用に向けて勉強していると、かならず耳にするのが「グラウンディング」や「RAG」というキーワードです。グラウンディングは、LLM の基盤モデル自身が保有していない(学習していない)追加の参考情報をプロンプトに埋め込む事で、参考情報に基づいた回答を生成させるテクニ

    Gemini 1.5 のロングコンテキストを活かして AI を育てるアプローチ 〜 RAG の限界を軽やかに突破するために
    bayaread
    bayaread 2024/07/29
  • 1