前編 (平衡二分探索木編) はこちら http://www.slideshare.net/iwiwi/2-12188757

前編 (平衡二分探索木編) はこちら http://www.slideshare.net/iwiwi/2-12188757
業務経歴: Sierでのソフトウェア開発・大手メディアでのサービス運用を経て2012年サイバーエージェント入社。 アメーバ事業本部コミュニティサービスの開発責任者を経て、現在はアドテクスタジオで広告配信技術に注力。 好きな分野はグラフ探索とチューリングマシン。 ソーシャルサービスでは、ユーザ間のつながりやユーザ同士の類似性がとても重要です。 つながりの近いユーザや自分と似ているユーザを「もしかして友だち?」とサジェストすることでユーザ間のつながりを伸展させることができます。 そこで、ユーザの「つながり」具合が似ているユーザを「友だちかもしれないユーザ」としてサジェストを行うことを考えました。 しかし「つながり」のデータというのはユーザ数のベキ乗であるため、容量が大きくなりやすい性質があります。 即ち、「つながり」類似度の算出には時間がかかる、ということです。 この「つながり」類似度算出
いよいよ今回から、具体的なアルゴリズムの紹介に入っていきます。今回は、プログラミングにおける重要な概念である「探索」について考えます。グラフに変換し、探索する、という流れを知るとともに、そのグラフを効率よく探索する方法について紹介します。 今後紹介していくアルゴリズムについて お待たせしました! 「最強最速アルゴリズマー養成講座」という連載タイトルのとおり、今回の連載からいよいよ具体的なアルゴリズムの紹介に入っていきたいと思います。 しかし、それを読んでいただく前に、1つ注意してもらいたいことがあります。連載第3回でもお伝えしたように、「問題を、既存の適当なアルゴリズムに当てはめる」という考え方は、非常に危険である、ということです。 筆者の経験上、TopCoderでRedCoder以上を目指すのであれば、回答時間短縮のために、いままでのパターンを利用するのも方法の1つなのですが、本連載では
昨日,PFI セミナーにて「大規模グラフアルゴリズムの最先端」というタイトルで発表をさせてもらいました.スライドは以下になります. 大規模グラフアルゴリズムの最先端 View more presentations from iwiwi 当日は Ustream もされており,録画された発表もご覧になれます. http://www.ustream.tv/recorded/19713623 内容の流れとしては,以下のようになっています. 導入 アルゴリズム界隈での話題 最新の研究動向 道路ネットワークでの最短路クエリ処理 基礎的な手法:双方向 Dijkstra,A*, ALT 最新の手法:Highway Dimension + Hub-Labeling Algorithm DB 界隈での話題 最新の研究動向 複雑ネットワークでの最短路クエリ処理 基礎的な手法:ランドマークを用いた最短距離推定 最
リリース、障害情報などのサービスのお知らせ
最新の人気エントリーの配信
処理を実行中です
j次のブックマーク
k前のブックマーク
lあとで読む
eコメント一覧を開く
oページを開く