ゼロから始める深層強化学習(NLP2018講演資料)/ Introduction of Deep Reinforcement Learning

なお、劣モジュラー性についてさらに知りたい方は、チュートリアル[3]が参考になります。 昨年のNIPSでの動向 それでは、昨年のNIPSでの動向を見てみましょう。 Bach[4]は、L∞ノルムが劣モジュラー関数のロヴァース拡張から導出できることを示すことにより, 劣モジュラー性とスパース性との関係を示しました。さらに, この洞察から教師あり学習で用いることができる新しい3つのノルムを提案しました。また、勾配法や近接法が劣モジュラー関数最適化に使えることを示し, 実験によりL1,とL2ノルムを用いるより精度が良いことを示しました。 Stobbe and Krause[5]は、劣モジュラー関数を凹関数の和として分解できる新しいクラス(decomposable submodular function)を定義し, カット問題, マルコフ確率場の最適化, 集合被覆問題などがその新しいクラスの最小化問
HadoopとMahoutにより、ビッグデータでも機械学習を行うことができます。Mahoutで実装されている手法は、全て分散処理できるアルゴリズムということになります。Mahoutで実装されているアルゴリズムは、ここに列挙されています。論文としても、2006年に「Map-Reduce for Machine Learning on Multicore」としていくつかのアルゴリズムが紹介されています。 そこで今回は、(何番煎じか分かりませんが自分の理解のためにも)この論文で紹介されているアルゴリズムと、どうやって分散処理するのかを簡単にメモしておきたいと思います。計算するべき統計量が、summation form(足し算で表現できる形)になっているかどうかが、重要なポイントです。なってない場合は、”うまく”MapReduceの形にバラす必要があります。 ※例によって、間違いがあった場合は随時
2010年~2011年に社内で開催した機械学習勉強会の『パターン認識と機械学習』読書会で、光成さんが素晴らしいアンチョコを作ってくれました。PDFファイルは既にgithub 上で公開されていますが、このまま埋もれさせておくのはもったいないということで、暗黒通信団の同人誌として正式に出版されることが決まりました。 ※ 表紙のデザインは今後変更される可能性があります。 目次は以下の通りです。 第 1 章 「序論」のための確率用語 1.1 確率変数は変数なのか.............................. 7 1.1.1 確率空間(Ω, F, P)............................. 7 1.1.2 σ 加法族..................................... 8 1.1.3 確率変数X..........
リリース、障害情報などのサービスのお知らせ
最新の人気エントリーの配信
処理を実行中です
j次のブックマーク
k前のブックマーク
lあとで読む
eコメント一覧を開く
oページを開く