
目次 訳者まえがき はじめに 1章 Rを利用する 1.1 機械学習のためのR 1.1.1 Rのダウンロードとインストール 1.1.2 IDEとテキストエディタ 1.1.3 Rパッケージの読み込みとインストール 1.1.4 機械学習のためのRの基礎知識 1.1.5 Rに関する情報 2章 データの調査 2.1 探索と確証 2.2 データとは何か? 2.3 データ内の列の型を推論する 2.4 意味推論 2.5 数値による要約 2.6 平均値、中央値、最頻値 2.7 分位数 2.8 標準偏差と分散 2.9 探索的データの可視化 2.10 複数の列の関係の可視化 3章 分類:スパムフィルタ 3.1 白か黒か?二値分類 3.2 やさしい条件付き確率入門 3.3 初めてのベイズスパム分類器を書く 3.3.1 分類器を定義し、非スパム(難)でテストする 3.3.2 分類器をすべての種類の電子メールに対し
最近、人に本を薦める事が多くなった。とりあえずこの辺を読むといいですよ的なリストを作っておくと便利だと思ったので作ることにした。 以下、「事前知識のいらない入門本」「事前知識はいらないけど本格的な本」「事前知識がないと何言ってるかわからないけど有益な情報が満載な本」の3つにわけて列挙する。 事前知識のいらない入門本 数式少なめ、脳負荷の小さめな本をいくつか。何をやるにしてもデータ構造、アルゴリズム、数学はやっておくと幸せになれるよ。 情報検索と言語処理 データマイニングとか自然言語処理とかやりたい人にはとりあえずこれ。さすがに古い話が多くなってきたのでそろそろ新しい入門用情報検索本がでないかなあと思っている。 図解・ベイズ統計「超」入門 伝説のベイジアン先生がベイズの基礎を教えてくれる本。ベイズやりたい人はこれ。 珠玉のプログラミング データ構造とかアルゴリズムとかの考え方の基礎を教えてく
「高速文字列解析の世界」という大変すばらしい本が発売された。わりと敷居が高い本ではあるので読む前に知っておくとよさそうなことを書いておく。 「高速文字列解析」とは 本書でいう高速文字列解析というのは主に2つのことを指している。ひとつはデータを圧縮して小さくしてディスクよりメモリ、メモリよりキャッシュというようにより高速な記憶装置で扱いましょう、という話。もうひとつはデータ構造を工夫することで複雑な操作もそこそこ高速に扱えますよ、という話。つまり「圧縮」の話と「効率的なデータ構造」の話があると考えておくと良い。 キーワードは3つ オビにも書いてあるけれど、本書が主に扱うのは「BWT」「簡潔データ構造」「ウェーブレット木」の3つ。具体的には「BWT」が「圧縮」に関わっていて「ウェーブレット木」が「効率的なデータ構造」に関わっている。「簡潔データ構造」は基本的な道具として本書の色々なところで出て
2012年02月09日02:15 カテゴリ書評/画評/品評SciTech 電脳的ラスボス言語の攻略 - 書評 - 日本語入力を支える技術 出版社より献本御礼。 日本語入力を支える技術 徳永拓之 いい時代になったものだ。 コンピューターで扱うのに最も難解な言語の一つである日本語の取り扱い方を、書籍で学べるなんて。 しかしこうして本で読んでみると、改めてすごいことだと思う。 この難問から、我々が逃げずに取り組んで来たことに。 本書「日本語入力を支える技術」は、今や「出来て当たり前」となった電脳に対する日本語入力を中心に、電脳で日本語をどう扱うのか、どこまで扱えるのかを簡潔(succinct)にまとめた一冊。さすがPFIの中の人が著者だけあって、本書自体が簡潔データ構造で記述されているのではないかというぐらい中身の濃い一冊で、本blogで取り上げる本の中では最もページ密度の高い本の一つである。
リリース、障害情報などのサービスのお知らせ
最新の人気エントリーの配信
処理を実行中です
j次のブックマーク
k前のブックマーク
lあとで読む
eコメント一覧を開く
oページを開く