ゼロから始める深層強化学習(NLP2018講演資料)/ Introduction of Deep Reinforcement Learning

なお、劣モジュラー性についてさらに知りたい方は、チュートリアル[3]が参考になります。 昨年のNIPSでの動向 それでは、昨年のNIPSでの動向を見てみましょう。 Bach[4]は、L∞ノルムが劣モジュラー関数のロヴァース拡張から導出できることを示すことにより, 劣モジュラー性とスパース性との関係を示しました。さらに, この洞察から教師あり学習で用いることができる新しい3つのノルムを提案しました。また、勾配法や近接法が劣モジュラー関数最適化に使えることを示し, 実験によりL1,とL2ノルムを用いるより精度が良いことを示しました。 Stobbe and Krause[5]は、劣モジュラー関数を凹関数の和として分解できる新しいクラス(decomposable submodular function)を定義し, カット問題, マルコフ確率場の最適化, 集合被覆問題などがその新しいクラスの最小化問
リリース、障害情報などのサービスのお知らせ
最新の人気エントリーの配信
処理を実行中です
j次のブックマーク
k前のブックマーク
lあとで読む
eコメント一覧を開く
oページを開く