タグ

関連タグで絞り込む (1)

タグの絞り込みを解除

+algorithmに関するbun2subのブックマーク (8)

  • kikuzone on Twitter: "「同じ著者の小説をつなげてzip圧縮したら、複数の著者の小説をつなげて圧縮するよりも圧縮率がいいから著者推定に使える!」って論文が見つかった。キワモノかと思ったら精度いいし。論文探してるとしばしば「その発想はなかったわ」な物が見つかって面白いが俺は数日前にこれをやっとくべきだ。"

    「同じ著者の小説をつなげてzip圧縮したら、複数の著者の小説をつなげて圧縮するよりも圧縮率がいいから著者推定に使える!」って論文が見つかった。キワモノかと思ったら精度いいし。論文探してるとしばしば「その発想はなかったわ」な物が見つかって面白いが俺は数日前にこれをやっとくべきだ。

    kikuzone on Twitter: "「同じ著者の小説をつなげてzip圧縮したら、複数の著者の小説をつなげて圧縮するよりも圧縮率がいいから著者推定に使える!」って論文が見つかった。キワモノかと思ったら精度いいし。論文探してるとしばしば「その発想はなかったわ」な物が見つかって面白いが俺は数日前にこれをやっとくべきだ。"
  • 10兆までの素数のリストを作ってみませんか?

    もしあなたがプログラマだったら、プログラムを書いて10兆までの素数のリストを作ってみてほしい。情報システムの開発に携わる人であれば、10兆までの素数のリストを出力するシステムの見積もりを考えてみてほしい。費用はどれくらいかかるか、納期はどれくらいか、あなたはどんな答を出すだろうか。仕様書はうまく書けるだろうか。 記者がこんなことをいうのは、自分で10兆までの素数のリストを作ってみて、とても面白かったからだ。図1のプログラムを書いて出力が成功するまで約2週間、夢いっぱいの楽しいひとときを過ごせた。予期せぬ問題も発生したけれど、最後にはコンピュータがまだまだ発展する可能性を持つと感じられた。素数のリストを作る演習は、プログラミングと情報システムにおける有益な演習の一つである。 アルゴリズムの有効性が納得できる この演習の面白い点は、まずアルゴリズムの有効性を納得できる点だ。素数(prime)は

    10兆までの素数のリストを作ってみませんか?
  • 病みつきになる「動的計画法」、その深淵に迫る

    数回にわたって動的計画法・メモ化再帰について解説してきましたが、今回は実践編として、ナップサック問題への挑戦を足がかりに、その長所と短所の紹介、理解度チェックシートなどを用意しました。特に、動的計画法について深く掘り下げ、皆さんを動的計画法マスターの道にご案内します。 もしあなたが知ってしまったなら――病みつきになる動的計画法の集中講義 前回の『アルゴリズマーの登竜門、「動的計画法・メモ化再帰」はこんなに簡単だった』で動的計画法とメモ化再帰を説明しましたが、前回の説明ではまだ勘所をつかめていない方がほとんどでしょう。そこで、これらを完全にマスターするため、今回はもう1つ具体例を挙げながら練習したいと思います。 どういった問題を採用するかは悩みましたが、非常に有名な「ナップサック問題」を取り上げて説明します。 ナップサック問題とは以下のような問題です。 幾つかの品物があり、この品物にはそれぞ

    病みつきになる「動的計画法」、その深淵に迫る
  • 最強最速アルゴリズマー養成講座:アルゴリズマーの登竜門、「動的計画法・メモ化再帰」はこんなに簡単だった (1/5) - ITmedia エンタープライズ

    動的計画法とメモ化再帰 今回は、非常によく用いられるアルゴリズムである、「動的計画法」「メモ化再帰」について説明します。この2つはセットで覚えて、両方使えるようにしておくと便利です。 なお、メモ化再帰に関しては、第5・6回の連載の知識を踏まえた上で読んでいただけると、理解が深まります。まだお読みになっていない方は、この機会にぜひご覧ください。 中学受験などを経験された方であれば、こういった問題を一度は解いたことがあるのではないでしょうか。小学校の知識までで解こうとすれば、少し時間は掛かるかもしれませんが、それでもこれが解けないという方は少ないだろうと思います。 この問題をプログラムで解こうとすると、さまざまな解法が存在します。解き方によって計算時間や有効範囲が大きく変化しますので、それぞれのパターンについて考えます。 以下の説明では、縦h、横wとして表記し、プログラムの実行時間に関しては、

    最強最速アルゴリズマー養成講座:アルゴリズマーの登竜門、「動的計画法・メモ化再帰」はこんなに簡単だった (1/5) - ITmedia エンタープライズ
  • トップクラスだけが知る「このアルゴリズムがすごい」――「探索」基礎最速マスター

    トップクラスだけが知る「このアルゴリズムがすごい」――「探索」基礎最速マスター:最強最速アルゴリズマー養成講座(1/4 ページ) プログラミングにおける重要な概念である「探索」を最速でマスターするために、今回は少し応用となる探索手法などを紹介しながら、その実践力を育成します。問題をグラフとして表現し、効率よく探索する方法をぜひ日常に生かしてみましょう。 まだまだ活用可能な探索 前回の「知れば天国、知らねば地獄――『探索』虎の巻」で、「探索」という概念の基礎について紹介しました。すでに探索についてよく理解している方には物足りなかったかと思いますが、「問題をグラフとしてうまく表現し、そのグラフを効率よく探索する」というアルゴリズマー的な思考法がまだ身についていなかった方には、得るものもあったのではないでしょうか。 前回は、「幅優先探索」と「深さ優先探索」という、比較的単純なものを紹介しましたが

    トップクラスだけが知る「このアルゴリズムがすごい」――「探索」基礎最速マスター
  • アルゴリズム入門 : 第 4 章 画像処理入門 2

    コースおよび認定資格 Microsoft Imagine Academy は、学生と教育者がテクノロジー志向の経済において成功できるように導くカリキュラムや認定を提供します。

    アルゴリズム入門 : 第 4 章 画像処理入門 2
  • 「1000のアルゴリズムを持つ男」vs.「やわらか頭脳」

    「1000のアルゴリズムを持つ男」vs.「やわらか頭脳」:最強最速アルゴリズマー養成講座(1/3 ページ) 典型的なアルゴリズムをたくさん知っている人間が最強か――? いいえ、典型的なアルゴリズムを知らなくても、違ったアプローチで答えに迫る方法はいくらでも存在します。短い実行時間で正確な答えを導き出せるかを考える習慣をつけましょう。 アルゴリズマー養成講座と銘打ってスタートした連載。もしかすると読者の方の興味は、はやりのアルゴリズムや汎用的なアルゴリズムを知ることにあるのかもしれません。しかし、今回は、いわゆる「典型的なアルゴリズム」を用いずに進めていきたいと思います。 なぜ典型的なアルゴリズムを用いないのか。それは、典型的なアルゴリズムばかりを先に覚え、それだけでTopCoderなどを戦っていこうとした場合、それに少しでもそぐわない問題が出た場合に、まったく太刀打ちできなくなってしまう

    「1000のアルゴリズムを持つ男」vs.「やわらか頭脳」
  • オーダーを極める思考法

    プログラムの実行に掛かる時間を把握しておくのは、プログラミングを行う上で基的な注意点です。今回は、計算量のオーダーについて学びながら、TopCoderのMedium問題を考えてみましょう。 プログラムの実行時間 業務としてプログラミングをされている方には釈迦に説法かもしれませんが、プログラムの実行に掛かる時間を把握しておくのは、プログラミングを行う上で基的な注意点です。そしてこれは、TopCoderなどのコンテストでプログラムを組む際にもよく当てはまります。通常、こうしたことは感覚的に理解している方がほとんどだと思いますが、具体的にどれくらいのループを回すと何秒掛かる、といった基準を持っている人は少ないのではないでしょうか? 非常に基的なことですが、プログラムの実行時間に関して再確認しておきたいと思います。 TopCoderの制限に関して TopCoderでは、実行時間およびメモリ使

    オーダーを極める思考法
  • 1