タグ

関連タグで絞り込む (1)

タグの絞り込みを解除

LLMに関するbyaa0001のブックマーク (2)

  • 話題のGraphRAGとは - 内部構造の解析と実用性の考察

    初めまして。経営企画AI推進室の鏡味、窪田、小林と申します。当社は年度、AI推進室という新組織を発足させ、主に生成AIについての社内の利用促進、およびユーザーへ生成AIを活用したソリューションの提供を進めるべく、新技術の展開や検証を行っています。 今回は、最近話題となっている、Microsoftが発表したRAG(Retrieval Augmented Generation)技術であるGraphRAG ⧉について、元となる論文やブログ記事、GitHubのコードを元に内部の構造を解析し、さらに現時点でどの程度実用的かを考察していきます。 GraphRAGとは GraphRAGは、ナレッジグラフと生成AI技術を組み合わせることで、従来のRAGでは対応が難しかった問い合わせに回答できるようになったRAGです。2024年2月にMicrosoftによって発表 ⧉され、その後、2024年7月にリ

    話題のGraphRAGとは - 内部構造の解析と実用性の考察
  • LLM時代の強化学習 - どこから見てもメンダコ

    強化学習におけるLLMの活用パターン調査 はじめに:実世界における強化学習の課題 LLM×強化学習 人間はゼロショット推論によりサンプル効率の良い学習ができる LLMによるゼロショット推論の例 さまざまなLLM活用パターン 1. 報酬モデルとしてのLLM LLMによる代理報酬モデル VLMによる外観ベース代理報酬モデル 外部知識にもとづく報酬モデル設計 2. 計画モデルとしてのLLM LLMによるセマンティック計画 LLMによる構造的な探索計画 3. 方策モデルとしてのLLM LLM as 確率方策 マルチモーダルLLM as 確率方策 参考:GPTアーキテクチャの転用 4. 世界モデルとしてのLLM Language Models Meet World Models (あとで書く) おわりに:VLM as 確率方策に期待 はじめに:実世界における強化学習の課題 レトロゲームで人間並みのパ

    LLM時代の強化学習 - どこから見てもメンダコ
  • 1