ビジネスでデータサイエンスを活用するシーンとして、過去データを使って将来を予測するタイプの問題がある。商品販売数や店舗売上高など、折れ線グラフを使って表現するようなデータ(時系列データ)に基づいた時系列分析だ。過去の販売データに基づいて翌月の発注量を決めたり、3年後など中長期の計画を策定したりするのに使う。今回は、この時系列分析に活用しやすい3つのアルゴリズムを見ていこう。 Prophet
本講座では計8回にわたり、ディープニューラルネットワークの原理と実装について 説明してきた。ニューラルネットワークの原理は基本的には 勾配降下法であり、その基盤となっているのが関数の微分可能性である。 ニューラルネットワークにはさまざまな形態が存在するが、 画像処理・画像認識の場合は畳み込みニューラルネットワークが非常に 有効であることがわかっている。また、ニューラルネットワークの 出力形式や損失関数を変えることにより、ニューラルネットワークが 物体検出や奥行き推定など、さまざまなタスクに利用可能であることを紹介した。 さて、本講座は「真面目なプログラマのための」ディープラーニング入門、 と銘打っている。真面目なプログラマとは何か? 諸説いろいろあるだろうが、 多くのプログラマは、ソフトウェア開発において 仕様の明確さや、 システムの効率・堅牢性、そして 保守のしやすさといったものを 追求
0. アルゴリズムとは? まず、アルゴリズムとは何かを説明します。(0 節の説明はスライド「50 分で学ぶアルゴリズム」 の説明を参考にして書きました) さて、次の問題を考えてみましょう。 問題: 1 + 2 + 3 + … + 100 の値を計算してください。 単純な方法として、式の通りに 1 つずつ足していく方法が考えられます。すると、以下の図のように答えが計算されることになります。 これで答え 5050 が正しく求まりました。これはれっきとした アルゴリズム であり、この問題を 99 回の足し算 で解いています。しかし、計算回数が多く、計算に時間がかかるのではないかと思った方もいると思います。 ここで、方法を変えて、「1 + 100」「2 + 99」「3 + 98」…「50 + 51」の合計を求めることで、1 + 2 + 3 + … + 100 の値を計算してみましょう。 50 個の
1. はじめに こんにちは、はじめまして。東京大学 1 年生の米田優峻(E869120)と申します。私は競技プログラミングが趣味で、AtCoder や国際情報オリンピックなどの大会に出場しています1。2021 年 11 月時点で、AtCoder では赤色(レッドコーダー)です。また、2020 年以降、アルゴリズムを学べる以下のようなコンテンツや資料を作成してきました。 レッドコーダーが教える、競プロ上達ガイドライン 競プロ典型 90 問 50 分で学ぶアルゴリズム さて、このたびは技術評論社から、書籍を出版させていただくことになりました2。アルゴリズムと数学が同時に学べる新しい入門書です。 「アルゴリズム×数学」が基礎からしっかり身につく本 - amazon 発売日は今年のクリスマス、2021/12/25 です。電子書籍版も同時期に出る予定です。本記事では、この本の内容と想定読者について、
プロローグ ストーリー編 第1章 感銘 step1. KPIの設定 step2. データの観測構造をモデル化する step3. 解くべき問題を特定する step4. 観測データのみを用いて問題を解く方法を考える step5. 機械学習モデルを学習する step6. 施策を導入する 第2章 絶望 第3章 反省 第4章 再起 step1(再) KPIの設定 step2(再) データの観測構造をモデル化する step3(再) 解くべき問題を特定する step4(再) 観測データのみを用いて問題を解く方法を考える step5(再) 機械学習モデルを学習する step6(再) 施策を導入する 第5章 俺たちの戦いはこれからだ! 実装編 準備 擬似データの生成 意思決定モデルの学習 モデルのオフ方策評価 モデルの真の性能の評価 まとめ この記事を読んだ方はこんな記事も読んでいます(多分) @tkana
とは言ってみたものの実際にはちょうど1年前くらいからやってました。始めてからすぐ Premium 買ってたので。 うおお、LeetCode の Premium が Expire していた、、— Satoshi SUZUKI (@studio3104) December 11, 2020 ではなんで「半年間で」なのかというと、今年の前半は英語の勉強をがっつりやってたので英語と仕事以外のことは何もしてなかったから。 そして300問はまだいってないんだけど、英語漬けから空けた6月アタマから数えて半年経過の今月末には300問いくだろうという見込みがあるということでタイトルはこのようにした。 1年間で LeetCode の問題を290問解いてみて ということで改めて。@sugyan と @fushiroyama *1 に影響されて始めたんだが、続ければ続くものですね。 自分は "コードの書けないイン
ウェブ最適化ではじめる機械学習 ―A/Bテスト、メタヒューリスティクス、バンディットアルゴリズムからベイズ最適化まで 作者:飯塚 修平発売日: 2020/11/19メディア: 単行本(ソフトカバー) こちらの書籍を著者の飯塚修平さんからご恵贈いただきました*1。テーマとしてはウェブ最適化即ちいわゆるUI/UX改善で、そのアプローチについて包括的にまとめた内容です。ちなみに本書は著者ご自身の修士・博士論文の内容に沿ったもので、いわば大学院での研究の集大成とも言えるものなのだそうです。 と書くと、いかにも「ガッチガチの研究」本に見えるかもしれませんが、引用されている事例などには一般のユーザー・消費者でもある我々にも馴染み深いものが多く、意外と取っ付きやすい内容だなと個人的には感じました。また、A/Bテスト・バンディット・ベイズ最適化とそれぞれ個別に専門書が書かれることが多く、別々に学ぶ羽目にな
競技プログラミングの問題を解くためには2つのステップがあります。 問題で要求されていることを言い換える知っているアルゴリズムやデータ構造を組み合わせて解く 必要な(知っておくべき)アルゴリズムやデータ構造は色々なところで学ぶことができます。 しかし、「問題の言い換え」や「アルゴリズムを思いつく」というのは、非常に様々なバリエーションがあり、問題をたくさん解かないとなかなか身につきません。 そこで、この記事は以下のことを言語化し、練習のための例題を提示することを目標とします。 問われていることを、計算しやすい同値なことに置き換える方法アルゴリズムを思いつくための考え方競技プログラミングで「典型的」と思われる考え方 ※一部問題のネタバレを含むので注意 ※良く用いられるアルゴリズムやデータ構造については競技プログラミングでの典型アルゴリズムとデータ構造 を参考にして下さい。 入力の大きさ(制約)
生物学的材料でできた小さなロボット「xenobot」が、ほぼ人工生物2020.01.22 21:0021,766 George Dvorsky - Gizmodo US [原文] ( Rina Fukazu ) 幅およそ1mmという小ささながら、そのポテンシャルは膨大なり。 タフツ大学、バーモント大学、ハーバード大学ヴィース研究所の研究者らによって新たに開発された「xenobot」は、寿命の長さが数日〜数週間あるという生体ロボット。米国科学アカデミー紀要(Proceedings of the National Academy of Sciences)で新たに発表された研究によると、"再構成可能な生物"と言い表されています。人工生体ロボットとは一体どのようなもので、どう作られたのか、そしてどのような分野で役立つのでしょうか? 100%生物学的材料から構成プレスリリースで「これは最新の生体ロボ
はじめに AIシステム部AI研究開発グループ アルバイトの五十嵐です。( @bonprosoft, ポートフォリオ:http://vbcpp.net/about/ ) 現在、東北大学大学院の修士1年で、大学院では(自然言語ではなく)高速な文字列処理アルゴリズムに関する研究を行っています。 私は2017年9月上旬から3週間ほど、アルバイト兼インターンとしてハッカドールチーム内のNLPのタスクに取り組んでいました。 その後はアルバイトとして、期間中にできなかった追加実験と実際の製品への適用に取り組んでいます。 取り組んだタスク 突然ですが、みなさま、ハッカドールはインストールされていますか? ハッカドールは、主にサブカルチャーに関する記事に特化した、ニュースアプリケーションです。 アプリケーション内のユーザーのクリックや「ホシイ/イラナイ」などのアクションを通して、ハッカドールがユーザーの好み
機械学習のスタックしていた案件をFacebook Prophetで3日で返済した話 背景 広告代理店業を行なっており、クライアント企業から予算を預かって、インターネット広告やマーケティング業をしているのだが、クライアントの予算消化の異常値を監視したい 2016年半ばに外部のデータ分析専門の会社に、その日の予算消化が異常の場合、アラートを鳴らすシステムを外注開始、2016年10月に納品 2017年9月半ばに進捗率が芳しくないことが判明した。終わる見込みが立たなかったので、私が解決に当たる (ついでに"Machine Learning: The High-Interest Credit Card of Technical Debt[2]"と呼ばれる負債化してしまう機械学習のシステムとはという評価軸があったので、これらから今回使えそうなプラクティスを取り出して適応してみたいというモチベーションが
Photo by Tim Samoff 秋山です。 皆さんはアルゴリズムについてどれくらい知っていますか?というか勉強したことありますか? 私はもともと情報系だったので学校でも習いましたが、paizaのプログラミングスキルチェック問題を作るときなどはいまだにいろいろ調べることもあります。 アルゴリズムについて勉強したことがない人の中には「ずっと気になってはいるものの、各プログラミング言語の書き方やフレームワークの使い方などを学ぶことに手一杯で、アルゴリズムはつい後回しになっている…」という方も多いと思います。 ただ、アルゴリズムを知らないままプログラミングを続けていると、少し複雑な処理を考えなければならなくなったときなどに、力技のやり方しか考えつかなくて「すごい人だったらもっとスマートな書き方ができるんだろうな……」と悶々としてしまうことがあるはずです。 今回はそんな方に向けて、アルゴリズ
リリース、障害情報などのサービスのお知らせ
最新の人気エントリーの配信
処理を実行中です
j次のブックマーク
k前のブックマーク
lあとで読む
eコメント一覧を開く
oページを開く