Neural Network-based Sketch Simplification全層畳込みニューラルネットワークによるラフスケッチの自動線画化 Edgar Simo-Serraシモセラ エドガー*, Satoshi Iizuka飯塚里志*, Kazuma Sasaki佐々木一真, Hiroshi Ishikawa石川博 (*equal contribution筆頭著者に相当) Project Siteプロジェクトサイト Regarding this service本サービスについて We provide a service to use AI to clean rough sketches based on "Learning to Simplify: Fully Convolutional Networks for Rough Sketch Cleanup" [Simo-Serra
デープラーニングはコモディティ化していてハンダ付けの方が付加価値高いといわれるピ-FNで主に工作担当のtai2anです。 NHKで全国放送されたAmazon Picking Challengeでガムテべったべたのハンドやロボコン感満載の滑り台とかを工作してました。 とはいえ、やっぱりちょっとディープラーニングしてみたいので1,2か月前からchainerを勉強し始めました。 せっかくなので線画の着色をしたいなーと思って色々試してみました。 線画の着色は教師あり学習なので線画と着色済みの画像のデータセットが(できれば大量に)必要です。 今回はOpenCVでカラーの画像から線画を適当に抽出しています。 抽出例 → カラーの画像を集めて線画を作ればデータセットの完成です。(今回は60万枚くらい使っています) ネットワークの形ですが、U-netという最初の方でコンボリューションする時の層の出
リリース、障害情報などのサービスのお知らせ
最新の人気エントリーの配信
処理を実行中です
j次のブックマーク
k前のブックマーク
lあとで読む
eコメント一覧を開く
oページを開く