algorithmとprogrammingに関するcou929のブックマーク (18)

  • 開発メモ: トップNソートの検討

    上位N件をソートした状態で取り出すという、いわゆる「トップNソート」の効率的な実装について検討してみた。 背景 データベースに対して、ある順序でソートした時の最初の何件かが欲しいというクエリを投げることはよくあるだろう。SNSで言えば、誰かのコンテンツの最新10件を表示するとかいう場合だ。SQLだと "ORDER BY xxx LIMIT yyy" とかいう感じ。同じような操作は全文検索システムのスコアリングでも定番である。俺もよく自分で実装するわけだが、その度に適当な試行錯誤をして時間がもったいないので、今回は入念に調べて決定版を出そうじゃないか。 全体をソートして上位を取り出せば目的は満たせるのだが、それだと無駄な計算が多い。100万件の中から上位10件だけ欲しい場合に、残りの99万9990件まで律儀にソートする必要はない。ということで、上位N件をソートして取り出すという「トップNソー

  • Google Code Jam 2010 Round1 感想 - 科学と非科学の迷宮

    無事通りました。とりあえず今年の目標は達成。 Round 1A Aだけ通って1710位。 他の方の解答(1Aまとめて) Google Code Jam Round 1A - tsubosakaの日記 - TopCoder部 A: Rotate 時計回りに90度回転→右に落とせばいいんじゃね?というのはすぐにわかった。 はじめ全座標について判定しようとか考えたけど、すぐに面倒なことになりそうだと思ったのでやめた。 縦と横はそのまま文字列に直しちゃって正規表現で一発判定。 で、斜めだけ座標ごとに判定してた。 よく考えたら斜めも文字列に直せばいいじゃん、と終わってから思った。 50分ぐらい。最初に解いていれば通ってたかもしれない。 他の方の解答 ゲームにっき(仮) |2010 Round 1A A問題 - Rotate B: Make it Smooth なぜかこれから着手。 DPで解こうと思っ

    Google Code Jam 2010 Round1 感想 - 科学と非科学の迷宮
    cou929
    cou929 2010/05/25
    おまけが面白い. プログラマにとってのアルゴリズムマッチは, スポーツで例えるとランニングとか素振りみたいなものだと思ってる
  • あなたのスキルで飯は食えるか? 史上最大のコーディングスキル判定

    あなたのスキルで飯はえるか? 史上最大のコーディングスキル判定:makeplex salon(1/2 ページ) この問題ができたから優秀な人材とは限らないけれど、できない人は“ほぼ確実に”優秀ではない――プログラマーの皆さまの実力を計るコーディングスキル判定問題を用意しました。あなたはこの問題が解けるでしょうか? 新年度が始まり、新たに社会人となった読者の方も多いかと思います。あるいは、転職で心機一転がんばろうという読者もおられるでしょう。 あなたがもしプログラマーやSEといった職種であれば、ぜひ面白い仕事を手がけていただきたいと思いますが、そもそも開発分野で当に面白い仕事とは何かを考えたことはありますか? その答えを論ずる前に、少し前に話題となったトピックを取り上げたいと思います。それは、岡嶋大介氏の「人材獲得作戦」についてです。ご存じない方のために少し補足しておくと、岡嶋氏は、株価

    あなたのスキルで飯は食えるか? 史上最大のコーディングスキル判定
    cou929
    cou929 2010/04/13
    いまさらだけどやりました. http://bit.ly/ddco7h
  • http://77.41.63.3/icpc2010/finals.html

    cou929
    cou929 2010/02/05
    petr's live update of icpc 2010 world finals
  • ACM Online Books and Courses - Books24x7 Listing

  • ハル研究所 プログラミングコンテスト2009

    プロコントークを更新しました。前・実行委員長へのインタビューを掲載しています。 (2009/11/19) 日よりエントリーの受付を開始しました。プロコンに参加希望の方は、まずはお早めにエントリーをお願いします。なお、エントリーをいただいた方には、問題発表日の2009年11月26日(木)が近づきましたら、お知らせのメールをお送りします。 (2009/11/19)

  • ALGORITHM NOTE

    X×Y個のセルから成るグリッド上のスタート地点から出発し、全5種類のパチクリ(生物)を捕まえた状態でゴール地点まで行く最短コストを求める問題です。各パチクリはそれぞれ、火、氷、木、土、水の属性を持ち、火のパチクリは氷のパチクリを捕まえることができ、氷のパチクリは木のパチクリを捕まえることができ、といったように火→氷→木→土→水→火というような属性の関連があります。スタート地点で最初に持つパチクリを1つ選ぶことができます。グリッドのサイズx, y はそれぞれ2以上1000以下で、各属性のパチクリの数はそれぞれ0以上1000以下です(全体の数は5000以下)。 最初に1つのパチクリを選んだ後のパチクリを捕まえる順番は、上記属性の関連の順番になります。例えば最初に火の属性をもつパチクリを持っていれば、氷、木、土、水の属性をもつパチクリを順番に捕まえてゴールに行けばよいので、下図に示すDAG(Di

  • ACM/ICPC国内予選突破の手引き

    ACM/ICPCの2008年度の大会日程が公開されています。 国内予選は2008年7月4日,アジア地区予選会津大会は2008年10月25日~27日でホスト校は会津大学です。 参加登録締め切りは2008年6月20日です。 ここではACM/ICPC(ACM国際大学対抗プログラミングコンテスト: ACM International Collegiate Programming Contest)で 国内予選を突破するために必要な情報を載せています。 ACM/ICPC自体については2006年度の横浜大会のWebサイトなどを読んでください。 結局のところ,ACM/ICPCで良い成績を残すにはひたすら問題を解く練習をするしかありません。 ですが,出題される問題の多くはいくつかのカテゴリ,例えば探索問題やグラフ問題,あるいは幾何問題などに分類することができます。 つまり,「傾向と対策」が存在します。

  • 最小全域木問題(クラスカル法とプリム法) - ぬいぐるみライフ?

    最小全域木問題を解くためのアルゴリズム「クラスカル法」と「プリム法」を使ってみた. 最小全域木について クラスカル法 プリム法 PKUの問題 クラスカル法による解答 プリム法による解答 メモリ使用量と実行時間の比較 最小全域木について まず,全域木(Spanning tree)とは連結グラフの全ての頂点とそのグラフを構成する辺の一部分のみで構成される木のこと.つまり,連結グラフから適当な辺を取り除いていき,閉路をもたない木の形にしたものが全域木となる.ここで,グラフの各辺に重みがある場合,重みの総和が最小になるように辺を選んで作った全域木のことを最小全域木(Minimum spanning tree)という. 最小全域木を求めるアルゴリズムとしては以下の二つが有名である. クラスカル法 (Kruskal's algorithm) プリム法 (Prim's algorithm) いずれも貪欲

    最小全域木問題(クラスカル法とプリム法) - ぬいぐるみライフ?
  • Spaghetti Source - 各種アルゴリズムの C++ による実装

    ACM/ICPC(プログラミングコンテスト)系列の問題を解くことを目標にして,各種アルゴリズムを C++ で実装してみた.極めて意地が悪い類の問題には対応していないし,特定の入力に対して高速に動くということもない.計算量も最良とは限らない. これらを参考にする方への注意とお願い: これらの記述は正確とは限りません.参考文献を参照することを強く推奨します.間違っている場合は是非教えてください. これらのプログラムは間違っているかもしれません.各人で検証することを強く推奨します.バグがあれば是非教えてください. 分類が怪しいので,これはこっちだろう,ということがあればコメントを下さると助かります. 注意! 現在書き換え中 TODO 分類を正しく行う. 全体的に説明と使い方を詳しく. Verify していないものを Verify. ボロノイ図(いつになることやら……) 基 テンプレート グラフ

  • 連載:検索エンジンを作る|gihyo.jp … 技術評論社

    運営元のロゴ Copyright © 2007-2025 All Rights Reserved by Gijutsu-Hyoron Co., Ltd. ページ内容の全部あるいは一部を無断で利用することを禁止します⁠。個別にライセンスが設定されている記事等はそのライセンスに従います。

    連載:検索エンジンを作る|gihyo.jp … 技術評論社
  • GC - GCアルゴリズム詳細解説 - livedoor Wiki(ウィキ)

    GCアルゴリズム詳細解説 日語の資料がすくないGCアルゴリズムについて詳細に解説します トップページページ一覧メンバー編集 × GC 最終更新: author_nari 2010年03月14日(日) 20:47:11履歴 Tweet このWikiが目指す所 GCとは? GCを学ぶ前に知っておく事 実行時メモリ構造 基アルゴリズム編 Reference Counter Mark&Sweep Copying 応用アルゴリズム編 IncrementalGC 世代別GC スナップショット型GC LazySweep TwoFinger Lisp2 Partial Mark and Sweep -Cycle Collection- Mostly Parallel GC train gc MostlyCopyingGC(Bartlett 1989) TreadmillGC(Barker 1992)

    GC - GCアルゴリズム詳細解説 - livedoor Wiki(ウィキ)
    cou929
    cou929 2008/01/16
    ガーベッジコレクション
  • Technical documentation

    This browser is no longer supported. Upgrade to Microsoft Edge to take advantage of the latest features, security updates, and technical support.

    Technical documentation
  • 404 Blog Not Found:プログラマーでなくても名前ぐらい覚えておきたいアルゴリズムx10

    2007年11月26日18:15 カテゴリMathLightweight Languages プログラマーでなくても名前ぐらい覚えておきたいアルゴリズムx10 ぎくっ あなたが一番好きなアルゴリズムを教えてください。 また、その理由やどんな点が好きなのかも教えてください。 - 人力検索はてな なぜぎくってしているかというと、実はすでにアルゴリズムの発注を受けているからなのだ。いつまでも伏せておくのもなんなので、ここにえいやっとdiscloseしてしまうことにする。 アルゴリズム大募集! C&R研究所 - トップページ その下書きもかねて、そこでも紹介しないわけに行かないメジャーなアルゴリズムをとりあえず10個紹介しておくことにする。 ユークリッドの互除法(Euclidean algorithm) その昔(数百年ほど前)は「アルゴリズム」といえば、「手順一般」を指すのではなく、この「互除法

    404 Blog Not Found:プログラマーでなくても名前ぐらい覚えておきたいアルゴリズムx10
  • あなたが一番好きなアルゴリズムを教えてください。 また、その理由やどんな点が好きなのかも教えてください。 - 人力検索はてな

    あなたが一番好きなアルゴリズムを教えてください。 また、その理由やどんな点が好きなのかも教えてください。

  • データ圧縮の基礎

  • livedoor Developers Blog:String::Trigram でテキストの類似度を測る - livedoor Blog(ブログ)

    こんにちは。検索グループ解析チームの nabokov7 です。 今回は、livedoor キーワードでの事例より、テキストの類似度を測るのに便利な手法を紹介します。 livedoor キーワードは、livedoor ブログでその日その日で話題になった語をランキング表示するサービスです。 当初、はてなキーワードやWikipediaを足して2で割ったようなサービスを作れといった開き直った指示のもとで開発が開始されたともいう、分社化前の芸風の名残で、キーワードの検索結果にはユーザが自由に解説を書き込める Wikipedia 的スペースもついています。 で、この解説部分に、さまざまなサイトから文章をまる写ししちゃう人がとても多いのですね。 特に多いウィキペディア日語版からの剽窃を防止するために、livedoor キーワードでは以下のような対策を講じることにしました。 ウィキペディア日語版の解説

  • スペル修正プログラムはどう書くか

    Peter Norvig / 青木靖 訳 先週、2人の友人(ディーンとビル)がそれぞれ別個にGoogleが極めて早く正確にスペル修正できるのには驚くばかりだと私に言った。たとえば speling のような語でGoogleを検索すると、0.1秒くらいで答えが返ってきて、もしかして: spelling じゃないかと言ってくる(YahooMicrosoftのものにも同様の機能がある)。ディーンとビルが高い実績を持ったエンジニアであり数学者であることを思えば、スペル修正のような統計的言語処理についてもっと知っていて良さそうなものなのにと私は驚いた。しかし彼らは知らなかった。よく考えてみれば、 別に彼らが知っているべき理由はないのだった。 間違っていたのは彼らの知識ではなく、私の仮定の方だ。 このことについてちゃんとした説明を書いておけば、彼らばかりでなく多くの人に有益かもしれない。Google

  • 1