タグ

2017年11月7日のブックマーク (2件)

  • 本当は恐ろしい分散システムの話

    2. 2Copyright©2017 NTT corp. All Rights Reserved. 諸説あるが、ここでの定義は「部分的な故障を許容するシステム」の事 複数台のコンピュータを接続して信頼性を高めたり データが途中で化けても再送したり訂正したり 一部のコンピュータが突然故障しても引き継いだり 故障を設計の一部に組み込む事が必須となる 分散システムとは 3. 3Copyright©2017 NTT corp. All Rights Reserved. • 世はまさに分散システム戦国時代 • Hadoopを皮切りに次々出てくる巨大分散OSS • シリコンバレーでも分散ミドルウェアベンチャーが多数出現 • 高信頼なシステムを作ろうと思った場合には複数台のマシンによる高可用構成 が前提になる • Google、Facebook、Amazon等はもちろん • 金融、流通などのエンタープラ

    本当は恐ろしい分散システムの話
  • キユーピー、グーグルの深層学習による原料検査で生産性2倍に

    「人力で実施していた品製造ラインの不良品検知にディープラーニング(深層学習)を使うことで、生産性を2倍に高められた」――。キユーピーの荻野武生産部次世代技術担当次長は、グーグルが2017年6月14日に開催したイベント「Google Cloud Next '17 in Tokyo」の報道関係者向けセッションに登壇。ディープラーニングを駆使した原料検査装置開発の取り組みを説明した。 荻野氏は同社の原料に対する思いをこう語る。「創業時から『良い商品は、良い原料からしか生まれない』という考え方を受け継いでいる。現在、数千種類の原料を取り扱っており、安全安心にこだわって良品を選別している」。 原料検査装置へのディープラーニング活用の対象としたのは、ベビーフード用のダイスポテト(賽の目状にカットされたジャガイモ)だ。従来は「一つの製造ラインに100万個ある原料に対し、異物混入や不良品がないかを人が

    キユーピー、グーグルの深層学習による原料検査で生産性2倍に