Deleted articles cannot be recovered. Draft of this article would be also deleted. Are you sure you want to delete this article?

import datetime import asyncio from time import sleep # グローバルな2面のデータバッファ DataBuffer1 = [] DataBuffer2 = [] # ログファイル出力数 logFileNum = 0 # 1ファイルあたりのデータ数 dataNumMax = 100 # 仮のファイル名 MACAddress = "12:34:56:78" # 2面のデータバッファを指定してバッファ格納 def storeDataBuffer(buffNo, dataStr): if (buffNo == 0): DataBuffer1.append(dataStr) else: DataBuffer2.append(dataStr) # 非同期で動かすがasyncは付けない def writeDataToFile(targetBuffNo)
はじめに Pythonはコードが汚くなりがち(個人的にそう思う) そんなPythonくんを快適に書くための設定を紹介します。 拡張機能編 ここでは Pythonを書きやすくするため の拡張機能を紹介していきます。 1. Error Lens before 「コード書いたけど、なんか波線出てるよ💦」 記述に問題があった場合、デフォルトでは波線が表示されるだけ。。。 after Error Lensくんを入れることによって 波線だけでなくエディタに直接表示される。 はい、有能〜 2. indent-rainbow before Pythonくんは インデントでスコープを認識している。 for の f から下に線が伸びてるけど、ちょっと見にくいなぁ after 色が付いてちょっと見やすくなった! 3. Trailing Space before 一見、普通に見えるコード after 末尾にある
使っているパソコンを変えても、開発環境を揃えたい時はDockerを使うと便利。ということでDockerでPython環境を作って色々なところで使いまわせるようにします。Tokyo AEC Industry Dev Groupというミートアップグループで行う(行った)ハンズオンワークショップの内容となっています。こちらDockerを初めて使う初心者用の記事となります。 ワークショップ自体は録画してYoutubeにアップしてあります。そちらもよろしければどうぞ。 Dockerとは Dockerとはシステム開発や運用に最近よく使われるコンテナ技術を提供するサービスの一つです。コンテナとは、アプリケーションの実行に必要な環境をパッケージ化して、いつでもどこからでも実行するための仕組みです。自分のコンピュータの環境を汚すことなく、隔離された環境を作ってそこでプログラムを動かすことができるのでトライア
# !usr/bin/python # -*- coding: UTF-8 -*- ## PyAutoGUIのモジュール # pip install pyautogui import pyautogui # クリップボードコピペ用 # pip install pyperclip import pyperclip import sys import time def GijiHenkan(kanji, roumaji, sleeptime): #roumaji文字列をタイプする(※全角モード前提) #pyautogui.typewrite(roumaji) #↑不自然に早いので不採用 #全部の文字を一文字ずつ打つ for char in roumaji: pyautogui.press(char, presses=1) time.sleep(sleeptime) #変換前にひとこきゅう ti
はじめに こんにちは、コピペデータサイエンティストです。 3年ぐらい前に「ラーメンと自然言語処理」というおちゃらけLTをしたのですが、今見ると恥ずかしいぐらいショボいので、Pythonで作りなおしてみました。 長くなったので3行でまとめると Web上に転がっている口コミとか紹介文を Pythonのライブラリを用いて解析することで 好きなラーメン屋に似たラーメン屋を見つける手法を構築した 方法 統計的潜在意味解析という手法を用います。ざっくり言うと、文書がどんなトピックを持っているか、何に関する文書なのか、を推定してくれるものです。 以下の様なイメージで各トピックに割り振られる割合を算出できるため、以下の例ではAとBが近い、ということを計算することが可能です。 ラーメン屋A: [0.75, 0.15, 0.10] ラーメン屋B: [0.60, 0.15, 0.15] ラーメン屋C: [0.0
base_domain = MODE.get('production') url_base = 'https://{}/v1/candles?'.format(base_domain) url = url_base + 'instrument={}&'.format(currency_pair.name) + \ 'count=5000&' +\ 'candleFormat=midpoint&' +\ 'granularity={}&'.format(granularity.name) +\ 'dailyAlignment=0&' +\ 'alignmentTimezone=Asia%2FTokyo&' +\ 'start={}T00%3A00%3A00Z'.format(start) response = requests_api(url) def requests_api(url, p
リリース、障害情報などのサービスのお知らせ
最新の人気エントリーの配信
処理を実行中です
j次のブックマーク
k前のブックマーク
lあとで読む
eコメント一覧を開く
oページを開く