ブックマーク / trtmfile.com (1)

  • フーリエ変換は自然現象を捉えるのに便利である

    前回記事フーリエ変換とは無限次元空間の直交分解のひとつであるでは、 三角関数の族は関数空間の正規直交基底になっているよ! フーリエ変換はそれらへの直交分解だよ! ということを説明しました。 今回はさらに、 フーリエ変換は自然現象を捉えるのに役に立つよ!! ということを説明していきたいと思います。 フーリエ変換で熱の拡散を捉えてみよう 明日の東京の気温はどれくらいだろうか? エアコンはどこに置くと冷却効率がよいだろうか? アツアツの鍋はどれくらい待てば持てるようになるだろうか? 今の状態から、将来の温度の様子がわかりたいですよね. 今回はその中でも単純な, 電熱線がどう冷めていくか?ということを考えていきます. 高さを温度としたときの熱拡散のアニメーションは, こんな感じです. 熱の拡散が満たすであろう法則を数式に直すと, 次のような微分方程式がモデルとして得られます. \begin{equ

    フーリエ変換は自然現象を捉えるのに便利である
  • 1