タグ

関連タグで絞り込む (1)

タグの絞り込みを解除

libsvmに関するdogwood008のブックマーク (2)

  • SVMを使いこなす!チェックポイント8つ - Qiita

    僕はSVMが大好きです.シュパッてきれいに分類できている姿を見ると,かっこよくてドキドキします. 今回は,SVMの性能を最大限に引き出すために知っておくと役立つことを書いていこうと思います.ちょっとチューニングを行うだけで,10%〜20%精度が向上するなんてことはよくあります. なお,記事は使いこなし方にフォーカスしているので,理論的なことを知りたい方は別途確認して下さい. 特徴量の作成 まずは,適切な特徴量を作成するにあたって注意すべきことを2つ紹介します. 1. スケーリング スケーリングとは,特徴量のとりうる値の範囲をあらかじめ調整してあげることです. なぜスケーリングするの? 理由は2つあります. 大きい値の範囲をとる特徴量に引きずられないようにします.[0,10]での1と2の違いは1だけですが,[0,10000]での1の100の違いよりもずっと重要です.すなわち,これらを対等に

    SVMを使いこなす!チェックポイント8つ - Qiita
  • 10秒で設定可能なlibsvmで機械学習を行う - Y's note

    Support Vector Machines (Information Science and Statistics) 作者: Ingo Steinwart,Andreas Christmann出版社/メーカー: Springer発売日: 2008/08/29メディア: ハードカバー クリック: 17回この商品を含むブログを見る libsvm LIBSVM -- A Library for Support Vector Machines R言語でSVM(Support Vector Machine)による分類学習 - Yuta.Kikuchiの日記 前回RでのSVMを簡単に紹介しましたが、今日はlibsvmを利用したirisの分類学習を行いたいと思います。libsvmは導入がめちゃくちゃ簡単なところが売りだと思います。zipをlibsvmサイトからdownloadして展開してgmakeで

    10秒で設定可能なlibsvmで機械学習を行う - Y's note
  • 1