これからの季節、「細胞」は透明感があり、見るからに涼しげだ。 水菓子にはぴったりだ。なのでさっそく作ってみたい。御菓子司・乙幡による、謹製「セルごよみ」である。 (乙幡 啓子) 高校では生物選択だった 水菓子にするからには、動物細胞より植物細胞のほうが適している気がする。なんとなく。 ではさっそく、細胞の観察をしてみよう。 学習用の安い顕微鏡がちょうど家にある。雑草からむしってきた葉っぱをプレパラートに載せて、覗いてみた、が。
これからの季節、「細胞」は透明感があり、見るからに涼しげだ。 水菓子にはぴったりだ。なのでさっそく作ってみたい。御菓子司・乙幡による、謹製「セルごよみ」である。 (乙幡 啓子) 高校では生物選択だった 水菓子にするからには、動物細胞より植物細胞のほうが適している気がする。なんとなく。 ではさっそく、細胞の観察をしてみよう。 学習用の安い顕微鏡がちょうど家にある。雑草からむしってきた葉っぱをプレパラートに載せて、覗いてみた、が。
画像内に映り込んだ所望のオブジェクトを排除し、違和感の無い画像を生成するシーン補完技術に関しては近年複数の研究成果が発表されている。しかし中でも2007年のSIGGRAPHにて米カーネギメロン大のJames HaysとAlexei A. Efrosが発表した手法*1はブレークスルーとなりうる画期的なものだ。 論より証拠、早速適用例を見てみよう。本エントリで利用する画像はPresentationからの引用である。元画像の中から邪魔なオブジェクト等の隠蔽すべき領域を指定すると、その領域が補完された画像が自動的に生成される。 アルゴリズム 効果は抜群だがアイデア自体は単純なものだ。Web上には莫大な数量の画像がアップされており、今や対象となる画像の類似画像を一瞬にして大量に検索することができる。そこで、検索された類似画像で隠蔽領域を完全に置き換えてしまうことで違和感の無い補完画像を生成するのだ。
リリース、障害情報などのサービスのお知らせ
最新の人気エントリーの配信
処理を実行中です
j次のブックマーク
k前のブックマーク
lあとで読む
eコメント一覧を開く
oページを開く