タグ

学習とmathに関するedo_m18のブックマーク (3)

  • フィボナッチ数列とは、ソリティアである - アジマティクス

    フィボナッチ数列 1,1から始めて、「前2つの項を足したものが次の項」という構造をしている数列が「フィボナッチ数列」です。具体的に書き下すとこういうものです。 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, ... 確かに「前2つの項を足したものが次の項」になっていますね。言うまでもないですが、ここに現れている一つ一つの数が「フィボナッチ数」です。 番目のフィボナッチ数を「」と表すことにすると、フィボナッチ数列は以下の式で定義されます。 (前二つの和が次の数) (1,1から始める) これだけで十分です。これだけ指定してさえあれば、以降の数値は一意に定まります。 そしてこれは「0,1」から始めて足していっても結局同じ数列が現れるので、「0番目のフィボナッチ数」つまりとして0をおくこともあります。 さて、このフィボナッチ数の間にはさまざ

    フィボナッチ数列とは、ソリティアである - アジマティクス
  • 「行列の倍率的要素」である行列式が0だったりマイナスだったりするときの話 - アジマティクス

    いままでのあらすじ 前回の記事(線形代数の知識ゼロから始めて行列式「だけ」理解する - アジマティクス)で、行列に対して定義される「行列式」というものをインストールしました。そこにいたるまでの道のりを振り返っておきます。前回の記事を読んでいない人はここさえ読んでおけば大丈夫です。 ・座標変換のうち、直線と原点を変えないものを線形変換という。 ・線形変換は、基底ベクトルがそれぞれどう変化するかだけで記述できる。 ・基底ベクトルがそれぞれどう変化するかは、一つの行列を使ってまとめて記述できる。 ・行列とは線形変換であるといってよい。 ・行列(≒線形変換)からは、「その変換によって座標全体がどれくらい伸び縮みするか」という値を取り出すことができる。 ・その値こそが、行列式である。 この記事では、そんな行列式にまつわるあれやこれやを拾っていきます。 行列式の計算 実際に行列が与えられたときにそこか

    「行列の倍率的要素」である行列式が0だったりマイナスだったりするときの話 - アジマティクス
  • 【画像45枚あり】フーリエ変換を宇宙一わかりやすく解説してみる

    こんにちは,学生エンジニアの迫佑樹(@yuki_99_s)です. 工学系の大学生なら絶対に触れるはずのフーリエ変換ですが,「イマイチなにをしているのかよくわからずに終わってしまった」という方も多いのではないでしょうか? 難しいのに加えて,教科書もちょっと不親切で,いきなり論理が飛躍したりするんですよね(僕の理解力の問題かもしれませんが) 僕がフーリエ変換について学んだ時に,以下のような疑問を抱きました. 出来る限り難しい式変形は使わずにこれらの疑問を解決できるようにフーリエ変換についてまとめてみました!! 多少厳密性を欠いても,とりあえず理解するという目的の記事なので,これを読んだあとに教科書と付き合わせてみることをおすすめします. それでは,いってみましょう!! 今回の記事は結構気で書きました. フーリエ変換の公式 今回のゴールを確認するべく,まずはフーリエ変換及びフーリエ逆変換の公式

    【画像45枚あり】フーリエ変換を宇宙一わかりやすく解説してみる
  • 1