タグ

関連タグで絞り込む (0)

  • 関連タグはありません

タグの絞り込みを解除

機械学習と学習に関するendornoのブックマーク (1)

  • 劣微分を用いた最適化手法について(3) - Preferred Networks Research & Development

    進撃の巨人3巻が11月に発売されるものと勘違いして屋を探し回っていましたが、発売日は12月9日でした。徳永です。 前回は、確率的勾配降下法(SGD)について説明しました。今回はいよいよ、劣微分を用いた最適化手法に付いての説明をおこないます。 前回の復習 前回は、最大エントロピーモデルによる線形識別器の学習方法について説明し、最後に正則化について紹介しました。正則化については重要性を主張しきれていなかった気がするので、もう一度過学習と正則化について説明しておきたいと思います。 前回、間違いは少ないほうがいいよね、というような話をしましたが、間違いには2種類あります。一つは既知のデータに対する間違いの多さで、もう一つは未知のデータに対する間違いの多さです。既知のデータに対する間違いを経験損失と言い、未知のデータに対する間違いを期待損失、もしくは汎化誤差と言います。(間違いと損失はちょっと違い

    劣微分を用いた最適化手法について(3) - Preferred Networks Research & Development
  • 1