O'Reillyのバンディット本のまとめ + 自分なりの解釈です。世の中になかなかバンディットの入門がなかったのでRead less
O'Reillyのバンディット本のまとめ + 自分なりの解釈です。世の中になかなかバンディットの入門がなかったのでRead less
英語版記事を日本語へ機械翻訳したバージョン(Google翻訳)。 万が一翻訳の手がかりとして機械翻訳を用いた場合、翻訳者は必ず翻訳元原文を参照して機械翻訳の誤りを訂正し、正確な翻訳にしなければなりません。これが成されていない場合、記事は削除の方針G-3に基づき、削除される可能性があります。 信頼性が低いまたは低品質な文章を翻訳しないでください。もし可能ならば、文章を他言語版記事に示された文献で正しいかどうかを確認してください。 履歴継承を行うため、要約欄に翻訳元となった記事のページ名・版について記述する必要があります。記述方法については、Wikipedia:翻訳のガイドライン#要約欄への記入を参照ください。 翻訳後、{{翻訳告知|en|Euclidean algorithm|…}}をノートに追加することもできます。 Wikipedia:翻訳のガイドラインに、より詳細な翻訳の手順・指針につい
機械学習の問題 については以前に紹介したので、次はどんなデータを収集し、どんな機械学習アルゴリズムを使うことができるのかを見ていきましょう。本投稿では、現在よく使用されている代表的なアルゴリズムを紹介します。代表的なアルゴリズムを知ることで、どんな技法が使えるかという全体的なイメージもきっとつかめてくるはずですよ。 アルゴリズムには多くの種類があります。難しいのは、技法にも分類があり拡張性があるため、規範的なアルゴリズムを構成するものが何なのか判別するのが難しいということですね。ここでは、実際の現場でも目にする機会の多いアルゴリズムを例にとって、それらを検討して分類する2つの方法をご紹介したいと思います。 まず1つ目は、学習のスタイルによってアルゴリズムを分ける方法。そして2つ目は、形態や機能の類似性によって(例えば似た動物をまとめるように)分ける方法です。どちらのアプローチも非常に実用的
リリース、障害情報などのサービスのお知らせ
最新の人気エントリーの配信
処理を実行中です
j次のブックマーク
k前のブックマーク
lあとで読む
eコメント一覧を開く
oページを開く