実践Pythonデータサイエンスのレクチャー86 決定木とランダムフォレスト 、やっっっと最終章に辿り着きました。 まぁ、理解しきれてないけど… 長かった。 この最終章、visualize_tree()という独自関数を使ってランダムフォレスト分類器による分類結果を二次元マップとして描いて可視化するんですが、パッと見、よく分からないんです。 理解した気になった meshgrid()関数 のことを、実際は理解できていなかったことも要因かな…。 復習を兼ねてvisualize_tree()関数を紐解いてみたら、その過程がとても楽しかったので、簡単に紹介します。 やりたいこと 機械学習の教師用データを自分で作り、それを学習したモデルを作って、未知のデータを網羅的に与えた結果を図示して楽しむのが、ここでの目的です。 機械学習って、本来はもっと高尚な目的があって分析すると思うんですが、ここではその辺り