タグ

Statisticsとwikipediaに関するfukudamasa09のブックマーク (5)

  • 実験計画法 - Wikipedia

    実験計画法(じっけんけいかくほう、英: Experimental design、Design of experiments)は、効率のよい実験方法を設計(デザイン)し、結果を適切に解析することを目的とする統計学の応用分野である。R・A・フィッシャーが1920年代に農学試験から着想して発展させた。特に1950年G・M・コックスとW・G・コクランが標準的教科書を出版し、以後医学、工学、実験心理学や社会調査へ広く応用された。またこれを基にして田口玄一による品質工学という新たな分野も生まれた。 他にも、マーケティングや新しい商品・サービスのコンセプトや仕様を考える場合などに用いられる、コンジョイント分析も有用である。 実験計画法の基的な原則は次の3つである。 局所管理化 影響を調べる要因以外のすべての要因を可能な限り一定にする。 反復 実験ごとの偶然のバラツキ(誤差)の影響を除くために同条件で反

    実験計画法 - Wikipedia
  • ネイピア数 - Wikipedia

    関数 y = ax の x = 0 における微分係数が 1(赤線)になるのは a = e(青線)のときである(破線は a = 2, 4 のとき)。 ネイピア数(ネイピアすう、英: Napier's constant)は、数学定数の一つであり、自然対数の底である。ネーピア数、ネピア数とも表記する。記号として通常は e が用いられる。その値は e = 2.71828 18284 59045 23536 02874 71352 … と続く超越数である。ネピアの定数とも呼ばれる。欧米では一般にオイラー数 (Euler's number) と呼ばれる(オイラーの定数 γ やオイラー数列とは異なる。)。また、ネイピア数の e は、18世紀の数学者オイラー(Euler)のeの略といわれる[1]。オイラーにちなんで名づけられた物事の一覧#オイラー数も参照。 なお、コンピュータにおける指数表記では、e また

    ネイピア数 - Wikipedia
  • 統計学 - Wikipedia

    この記事は検証可能な参考文献や出典が全く示されていないか、不十分です。 出典を追加して記事の信頼性向上にご協力ください。(このテンプレートの使い方) 出典検索?: "統計学" – ニュース · 書籍 · スカラー · CiNii · J-STAGE · NDL · dlib.jp · ジャパンサーチ · TWL (2021年3月) 正規分布は非常に一般的な確率密度関数の一つであり、中心極限定理により有用となっている。 散布図は、さまざまな変数間で観測された関係を示すために記述統計で利用される。この散布図はIrisデータセット(英語版)を使用している。 統計学(とうけいがく、英: statistics)とは、統計に関する研究を行う学問である。経験的に得られたバラツキのあるデータから、応用数学の手法を用いて数値上の性質や規則性あるいは不規則性を見いだす。統計的手法は、実験計画、データの要約や解

    統計学 - Wikipedia
  • R言語で統計解析入門: 目次1 テクニカルデータプレゼンテーション  梶山 喜一郎

    Technical Data presentation in R コピペで学ぶ Rでテクニカルデータプレゼンテーション 1.基礎統計解析編 グラフィックス・リテラシ-教育: 「図学 I ・図形情報 I ・統計学」科目 修了後のコースウェア 福岡大学工学部図学教室   梶山 喜一郎 ・つまみいで,学習しないように願います. ・データの可視化を体系・系統だったスキルにするために順を追って学習する. ・統計ブームに乗っている学習者も先人に感謝の気持ちを.さらに, ・確かなスキルにするために,教科書・解説書を理解し,Rスクリプトで確認. A. はじめに--ここは統計・解析の必要を味わった後で読めばよい まず,統計の手続きを実行する.慣れたら統計的に考えよう. 学校の統計学を復習--買った教科書とノートをまた読むだけ a. 測定と尺度 Measurement and scale b. 記述統計学の

  • 最尤推定 - Wikipedia

    最尤推定(さいゆうすいてい、英: maximum likelihood estimationという)や最尤法(さいゆうほう、英: method of maximum likelihood)とは、統計学において、与えられたデータからそれが従う確率分布の母数を点推定する方法である。 この方法はロナルド・フィッシャーが1912年から1922年にかけて開発した。 観測されたデータからそれを生んだ母集団を説明しようとする際に広く用いられる。生物学では塩基やアミノ酸配列のような分子データの置換に関する確率モデルに基づいて系統樹を作成する際に、一番尤もらしくデータを説明する樹形を選択するための有力な方法としても利用される。機械学習ではニューラルネットワーク(特に生成モデル)を学習する際に最尤推定(負の対数尤度最小化として定式化)が用いられる。 最尤推定が解く基的な問題は「パラメータ が不明な確率分布に

  • 1