タグ

wikipediaとMathematicsに関するfukudamasa09のブックマーク (10)

  • 行列 - Wikipedia

    数学の線型代数学周辺分野における行列(ぎょうれつ、英: matrix)は、数や記号や式などを縦と横に矩形状に配列したものである。 概要[編集] 行・列[編集] 横に並んだ一筋を行(row)、縦に並んだ一筋を列(column)と呼ぶ。 例えば、下記のような行列 は2つの行と3つの列によって構成されているため、(2,3)型または2×3型の行列と呼ばれる。 成分[編集] 書き並べられた要素は行列の成分と呼ばれ、行列の第 i 行目、j 列目の成分を特に行列の (i, j) 成分と言う。行列の (i, j) 成分はふつう ai j のように二つの添字を単に横並びに書くが、誤解を避けるために添字の間にコンマを入れることもある。また略式的に、行列 A の (i, j) 成分を指定するのに Ai j という記法を用いることもある。 和・積[編集] 行列の和は、行の数と列の数が同じ行列において、成分ごとの計

    行列 - Wikipedia
  • ポアンカレ予想 - Wikipedia

    予想の提唱者アンリ・ポアンカレ (3次元)ポアンカレ予想(ポアンカレよそう、Poincaré conjecture)とは、数学の位相幾何学(トポロジー)における定理の一つである。 3次元球面の特徴づけを与えるものであり、定理の主張は 単連結な3次元閉多様体は3次元球面 S3 に同相である というものである[2][3]。2014年現在まで7つのミレニアム懸賞問題のうち唯一解決されている問題である。 ポアンカレ予想は各次元で3種類(位相、PL、微分)があり、かなり解けているが 「4次元微分ポアンカレ予想」「4次元PLポアンカレ予想」「高次元微分ポアンカレ予想の残り少し」は未解決である。 これらは非常に重要な問題である[4][5][6]。 概説[編集] 図のトーラス上の2色のループは双方共に1点に収縮できない。よってトーラスは球と同相では無い。 ポアンカレ予想は、1904年にフランスの数学者アン

    ポアンカレ予想 - Wikipedia
  • エラトステネスの篩 - Wikipedia

    この記事は検証可能な参考文献や出典が全く示されていないか、不十分です。出典を追加して記事の信頼性向上にご協力ください。(このテンプレートの使い方) 出典検索?: "エラトステネスの篩" – ニュース · 書籍 · スカラー · CiNii · J-STAGE · NDL · dlib.jp · ジャパンサーチ · TWL(2019年6月) エラトステネスの篩 (エラトステネスのふるい、英: Sieve of Eratosthenes) は、指定された整数以下の全ての素数を発見するための単純なアルゴリズムである。古代ギリシアの科学者、エラトステネスが考案したとされるため、この名がついている。 アルゴリズム[編集] 2 から 120 までの数に含まれる素数を探すGIFアニメーション 指定された整数x以下の全ての素数を発見するアルゴリズム。このアニメーションでは以下のステップにそって 2 から

    エラトステネスの篩 - Wikipedia
  • Wikipedia (JP) - フーリエ変換(Fourier transform)

    この記事は検証可能な参考文献や出典が全く示されていないか、不十分です。出典を追加して記事の信頼性向上にご協力ください。(このテンプレートの使い方) 出典検索?: "フーリエ変換" – ニュース · 書籍 · スカラー · CiNii · J-STAGE · NDL · dlib.jp · ジャパンサーチ · TWL(2013年2月) 上は時間領域で表現された矩形関数f(t)(左)と、周波数領域で表現されたそのフーリエ変換f̂(ω)(右)。f̂(ω)はSinc関数である。下は時間遅れのある矩形関数 g(t) と、そのフーリエ変換 ĝ(ω)。 時間領域における平行移動 (ディレイ)は、周波数領域では虚数部の位相シフトとして表現される。 数学においてフーリエ変換(フーリエへんかん、英: Fourier transform、FT)は、実変数の複素または実数値関数を、別の同種の関数fに写す変換である

    Wikipedia (JP) - フーリエ変換(Fourier transform)
  • ネイピア数 - Wikipedia

    関数 y = ax の x = 0 における微分係数が 1(赤線)になるのは a = e(青線)のときである(破線は a = 2, 4 のとき)。 ネイピア数(ネイピアすう、英: Napier's constant)は、数学定数の一つであり、自然対数の底である。ネーピア数、ネピア数とも表記する。記号として通常は e が用いられる。その値は e = 2.71828 18284 59045 23536 02874 71352 … と続く超越数である。ネピアの定数とも呼ばれる。欧米では一般にオイラー数 (Euler's number) と呼ばれる(オイラーの定数 γ やオイラー数列とは異なる。)。また、ネイピア数の e は、18世紀の数学者オイラー(Euler)のeの略といわれる[1]。オイラーにちなんで名づけられた物事の一覧#オイラー数も参照。 なお、コンピュータにおける指数表記では、e また

    ネイピア数 - Wikipedia
  • 冪乗則 - Wikipedia

    この記事は検証可能な参考文献や出典が全く示されていないか、不十分です。出典を追加して記事の信頼性向上にご協力ください。(このテンプレートの使い方) 出典検索?: "冪乗則" – ニュース · 書籍 · スカラー · CiNii · J-STAGE · NDL · dlib.jp · ジャパンサーチ · TWL(2023年3月) この項目「冪乗則」は途中まで翻訳されたものです。(原文:en:Power law) 翻訳作業に協力して下さる方を求めています。ノートページや履歴、翻訳のガイドラインも参照してください。要約欄への翻訳情報の記入をお忘れなく。(2008年5月) 冪乗則にしたがうグラフの例。横軸が商品のアイテム数、縦軸が販売数量を表す。このモデルは「80:20の法則」として知られ、右に向かう部分はロングテールと呼ばれる。 冪乗則(べきじょうそく、power law)は、統計モデルの一つ。

    冪乗則 - Wikipedia
  • 数学上の未解決問題 - Wikipedia

    数学上の未解決問題(すうがくじょうのみかいけつもんだい、英: unsolved problems in mathematics)とは、未だ解決されていない数学上の問題のことで、未解決問題の定義を「未だ証明が得られていない命題」という立場を取るのであれば、そういった問題は数学界に果てしなく存在する。ここでは、リーマン予想のようにその証明結果が数学全域と関わりを持つような命題、P≠NP予想のようにその結論が現代科学、技術のあり方に甚大な影響を及ぼす可能性があるような命題、問いかけのシンプルさ故に数多くの数学者や数学愛好家たちが証明を試みてきたような有名な命題を列挙する。 ミレニアム懸賞問題[編集] 以下7つの問題はミレニアム懸賞問題と呼ばれ、クレイ数学研究所によってそれぞれ100万ドルの懸賞金が懸けられている。 P≠NP予想 ホッジ予想 ポアンカレ予想(グリゴリー・ペレルマンによって解決済み)

    数学上の未解決問題 - Wikipedia
  • ミレニアム懸賞問題 - Wikipedia

    ミレニアム懸賞問題(ミレニアムけんしょうもんだい、英: millennium prize problems)とは、アメリカのクレイ数学研究所によって、2000年に発表された100万ドルの懸賞金がかけられている7つの問題のことである。そのうち1つは解決済み、6つは2023年12月の時点で未解決である。ミレニアム賞問題、ミレニアム問題とも呼ばれる。 概説[編集] これらの問題は、それぞれの分野で非常に重要かつ難解な問題である[1]。 賞金を得るためには、査読つきの専門雑誌に掲載された後、二年間の経過期間を経て解決が学界に受け入れられたことが確認されなくてはならない[1]。なお、P≠NPとナビエ-ストークス方程式については、肯定的、否定的のいずれの解決に対しても賞金が与えられるが、他の問題については、否定的な解決は、それが問題の実効的な解決であるとみなされる場合に限り賞金が与えられる。否定的な解

  • 端数処理 - Wikipedia

    シャープ Compet CS-2122L上の丸めセレクタ。左のツマミで切り上げ・四捨五入・切り捨てのいずれかを選択し、右のツマミで小数点以下の桁数を選択する。事務用電卓の中には、この機種のように計算結果を指定した桁数に丸めて表示できるものもある。 端数処理(はすうしょり)とは、与えられた数値を一定の丸め幅の整数倍の数値に置き換えることである。平たく、丸め(まるめ)ともいう。 常用的には、十進法で10の累乗(…100、10、1、0.1、0.01…)が丸め幅とされることが多いが、そうでない丸め幅をもつ処理は存在する。十進法以外のN進法について同様の概念を考えることもできる。 丸めの種類[編集] 凡例[編集] 丸めは任意の丸め幅に対し可能だが、以下では特に断らない限り、丸め幅を1とする(後段の「#例」では、丸め幅は0.1である)。任意の丸め幅で丸めるには、丸める前に丸め幅で割り、丸めた後に丸め幅

    端数処理 - Wikipedia
  • ブラック–ショールズ方程式 - Wikipedia

    ブラック–ショールズ方程式(ブラック–ショールズほうていしき、英: Black–Scholes equation)とは、デリバティブの価格づけに現れる偏微分方程式(およびその境界値問題)のことである。 様々なデリバティブに応用できるが、特にオプションに対しての適用が著名である。ブラック-ショールズ方程式はヨーロピアンオプション[注 1]のオプション・プレミアム[注 2]の値を解析的に計算できるが、アメリカンタイプのプット・オプション[注 3]については(解析的には)計算できない。ただし、ブラック-ショールズモデルにおけるアメリカンコールオプションの理論価格はヨーロピアンコールオプションの理論価格と一致する[2]。 ブラック–ショールズ方程式は1973年にフィッシャー・ブラックとマイロン・ショールズによりオプションの価格付け問題についての研究の一環として発表された[3]。後にロバート・マート

    ブラック–ショールズ方程式 - Wikipedia
  • 1